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ABSTRACT 
This article introduces a scenario optimization framework 

for reliability-based design given measurements of the uncertain 

parameters. In contrast to traditional methods, scenario 

optimization makes direct use of the available data thereby 

eliminating the need for assuming a distribution class and 

estimating its hyper-parameters. Scenario theory provides 

formal bounds on the probabilistic performance of a design 

decision and certifies the system ability to comply with various 

requirements for future/unseen observations. This probabilistic 

certificate of correctness is non-asymptotic and distribution-free. 

Furthermore, chance-constrained optimization techniques are 

used to detect and eliminate the effects of outliers in the resulting 

optimal design. The proposed framework is exemplified on a 

benchmark robust control challenge problem having conflicting 

design objectives.  

 

Keywords: Reliability-based design optimization, scenario 

optimization, probability of failure, outliers. 

 

 

1. INTRODUCTION 
 

Reliability-Based Design Optimization (RBDO) methods 

have been historically developed to identify reliable system 

designs and by explicitly modeling relevant sources of 

uncertainty. RBDO approaches have proven their strength in 

different fields and disciplines, to name a few, in off-shore 

energy systems optimization, [1], in composite structures design, 

[2], or in improving the performance of turbomachinery 

aerodynamics, [3].  

 

To proceed with RBDO analysis, however, a well-suited 

model for the uncertainty should be provided and the 

performance of the final design will inevitably rely upon its 

                                                           
1 Contact author: roberto.rocchetta@nianet.org 
2 Contact author: luis.g.crespo@nasa.gov 

goodness. This can be seen as a shortcoming of existing RBDO 

methods as, in many situations, a good uncertainty model can be 

a very complex task requiring multivariate density estimation 

and dependency modeling.  As an example, think about defining 

a joint PDF fitted on the available data when the data are costly 

and thus limited or when the uncertain inputs are strongly 

dependent. In those situations, the analyst will be forced to 

introduce unwarranted model assumptions to describe the 

uncertainty, most likely affecting the final design. 

 

Differently from distribution-based RBDO methods, data-

driven optimization approaches do not rely on a probabilistic 

characterization of the uncertainty to seek and optimal design. In 

particular, Scenario optimization provides a means for data-

driven decision-making, [4]. In recent years, Scenario theory has 

grown in popularity thanks to its high degree of generality, and 

its ability to provide a theoretical certificate of robustness for the 

optimal solution (i.e. the probability of the decision to suitable to 

yet unseen scenarios given a degree of confidence), see e.g. [5]. 

 

Scenario theory has been extensively studied for convex 

programs. In such cases, the degree of generalization of a 

decision (robustness) to yet unseen scenarios can be determined 

in advance. In [6] an upper bound on the violation probability 

provided and, similarly, [4] investigated a lower bound on the 

samples size needed to guarantee a robustness degree.  The loss 

in robustness resulting from the removal of outliers in the dataset 

is studied in [7]. More recently, [8] presented the Wait-and judge 

method, which can be used to prescribe a-posteriori bounds on 

the robustness (i.e. only after the solution has been computed) of 

optimal designs found by both solving convex and non-convex 

optimization programs. Refinement of the Scenario theory to 

non-convex classes of problems has been investigated by 

different authors, see for instance, [5], [8], and [9]. 
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In this paper, a RBDO framework is proposed to minimize 

the probability of violating conflicting requirements. The 

proposed method is compared against alternative data-driven 

approaches and the quality of the solution discussed on the basis 

of the probabilistic performance of the optimal design. 

Probabilistic guarantees on the optimal design robustness are 

obtained using non-convex scenario theory. The proposed 

method is tested on a modified version of the benchmark 

problem for robust control design proposed by [10]. 

 

The structure of this paper is as follows: Section 2 

introduces the theoretical background on RBDO. Scenario 

theory is introduced in Section 3 and the proposed optimization 

framework is described In Section 4. Two scenario optimization 

schemes are tested on a modified version of a controls challenge 

problem introduced in Section 5. Results are discussed in Section 

6, and Section 7 closes the paper with preliminary conclusions 

and future research directions. 

 

 

2. RELIABILITY-BASED DESING-OPTIMIZATION  
 

The goal of RBDO problems is to find a design 𝑑∗ that 

minimizes the probability of failure 𝑃𝑓, i.e., 

 
𝑑∗ = arg min

d
𝑃𝑓 (𝑑)

  𝑃𝑓(𝑑) = ∫ 𝑓𝛿𝑑𝛿
 

𝐹(δ,d)

                             (1) 

 

where 𝑓𝛿 is the joint probability distribution function of uncertain 

parameters 𝛿 ∈ 𝛥 ⊆ ℝ𝑛𝑔 , d is the design variable 𝑑 ∈ Θ ⊆ ℝnd , 

and 𝐹(δ, d) is the composite failure domain defined as follows: 

 

 𝐹(δ, d) = ⋃ 𝐹i(δ, d)
𝑛𝑔

𝑖=1
                              (2) 

 

where 𝐹𝑖(𝛿, 𝑑) = {𝛿: 𝑔𝑖(𝛿, 𝑑) ≥  0} is the individual failure 

domain corresponding to the 𝑖𝑡ℎ requirement whereas the 

composite failure domain 𝐹(δ, d)  corresponds to all 𝑛𝑔 

reliability requirements. 𝑔 ∈  ℝ𝑛𝑔  is the system performance 

function. The complement of the failure domain is called the safe 

domain. A design 𝑑 satisfies the requirements for parameter 𝛿 if 

𝑔𝑖(𝛿 , 𝑑) <  0, ~ ∀ 𝑖 ∈ {1, . . , 𝑛𝑔}.  

 

Solving Eqn. (1) entails evaluating a multidimensional 

integral repeatedly. The high computational cost of estimating 

this integral has led to the use of asymptotic and sampling-based 

approximations e.g. FORM and SORM methods, Monte Carlo 

simulation (MCS), and other sampling-based approaches. Once 

an estimator  �̂�𝑓(𝑑)  is computed, an optimization algorithm can 

be readily applied. Note that the uncertainty model 𝑓𝛿(𝛿) is a key 

component of the process and, for instance in a MCS, it is 

necessary to sample m realizations of 𝑓𝛿(𝛿) to estimate:  

 

�̂�𝑓(𝛿, 𝑑) =
1

𝑚
∑ 𝟏𝑤(𝛿,𝑑)>0

𝑚
𝑖=1                              (3) 

 

where 𝑤(𝑑, 𝛿) =  𝑚𝑎𝑥𝑗  𝑔𝑗(𝑑, 𝛿) is the worst-case performance 

function, and 𝟏 is the indicator function. 

 

 Providing a good probabilistic model of 𝛿 can be a 

challenging task in many situations due to lack of data, complex 

dependencies, and high dimensions thereby requiring 

unwarranted assumptions. These, often unsubstantiated, 

assumptions might inevitably affect the optimal design. The 

formulation below seeks an optimal design that minimizes the 

chance of violating the system requirements without any 

assumption on the distribution for 𝛿.  

 

 

3. SCENARIO OTIMIZATION 
 

Scenario approaches have grown in popularity thanks to 

their data-driven setting, versatility and theoretical certificate of 

generalization which can be obtained for the proposed solution, 

[5]. Methods grounded on the Scenario theory have been used to 

address: robust optimization problems [4], [11], feasibility 

problems [7], regression and prediction problems, [12], [13]. 

 

To better understand the concepts on which Scenario theory 

is grounded, it is convenient to define mathematically a scenario 

optimization program. Consider a probability space Δ, equipped 

with a  𝜎-algebra and a probability measure ℙ. A set of IID 

observations 𝒟𝛿 = {𝛿(1), 𝛿(2), … , 𝛿(𝑁)}, e.g. samples of the 

uncertain parameters in (1), are drawn from Δ according to a 

stationary and unknown distribution ℙ. Each observation 𝛿(𝑖) ∈
Δ defines a so-called scenario and a Scenario Program 𝑆𝑃, the 

decision maker seeks to find an optimal decision (i.e. an optimal 

design in this work) 𝑑∗ = 𝒮𝒫 (𝒟𝛿) such that:  

 

𝒮𝒫 (𝒟𝛿): =    {
arg min

𝑑
𝑓(𝑑)

𝑠. 𝑡.  𝑑 ∈ Θ𝛿(𝑖)∀ 𝛿(𝑖) ∈  𝒟𝛿

               (4) 

 

where 𝑑 is the optimization variable, Θ is the decision space, 

𝑓: Θ ↦ ℝ   is any function (e.g. a cost or unreliability function) 

and Θ𝛿(𝑖) ⊆  Θ is the constrained decision space, i.e. a set of 

designs satisfying the system requirements for scenario 𝛿(𝑖). 

With this level of generality, the only assumptions are ℙ being 

stationary and the elements of 𝒟𝛿  being IID. 

 

3.1 Certify ɛ-robustness 

 

Scenario theory can be used to assess how well 𝑑∗ 

generalizes to yet unseen situations 𝛿 ∈ Δ, thus providing a 

powerful robustness-monitoring capability. For this purpose, it 

is useful to define a violation probability 𝑉(𝑑∗) = ℙ{δ ∈ Δ: 𝑑∗ ∈
Θδ} and a reliability parameter 𝜖 ∈  (0,1). An 𝜖-robust (or 𝜖-

feasible) design 𝑑∗ is a solution for which 𝑉(𝑑∗) ≤ 𝜖, [14]. In 

other words, an 𝜖-robust solution will comply with the 

requirements for new scenarios with probability 1-𝜖. 
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The violation probability, 𝑉(𝑑), is inherently stochastic, as 

it depends on the random set of scenarios 𝒟𝛿 . It has been proven 

that for convex and fully-supported problems the distribution of 

𝑉(𝑑) is dominated by the Beta distribution, independently from 

the probability ℙ generating 𝒟𝛿 . This result, together with a 

provided confidence parameter (𝛽), can be used to compute a 

tight upper bound on the optimal d 𝜖-robustness ℙN[𝑉(𝑑∗) ≤
ϵ] ≤ 1 − β. This is valid for convex problems for which given 

𝑁 > 𝑛𝑑, where 𝑛𝑑 is the number of design variables, and 𝑁 the 

sample size, the cardinality of the set of support constraints3, 𝑠𝑁
∗ , 

is equal to the dimension of the design space 𝑛𝑑 with probability 

1, [6]. However, convex problems are often only partially 

supported and real-world design problems are often non-convex. 

Recently, [14] and extended scenario theory to non-convex and 

partially supported problems. Specifically, they show that 

 

ℙN[𝑉(𝑑∗) ≤ ϵ(𝑠𝑁
∗ )] ≤ 1 − β                       (5) 

   

where ϵ is a function of the cardinality of the set of support 

constraints 𝑠𝑁
∗  (which is a computable quantity and sometimes 

reference to as solution complexity) given by 

 

ϵ(𝑘) = {

1                          if    𝑘 = 𝑁

1 − (
β

𝑁(𝑁
𝑘)

)

1

𝑁−𝑘

   otherwise
                         (6) 

  

 This result shows that a high complexity of a decision (𝑠𝑁
∗ ) 

corresponds to low generalization guarantees, i.e., lower 

robustness.  Moreover, it shows that solutions with better 

coverage of Δ (i.e. higher 𝑁), but same complexity 𝑠𝑁
∗ , have 

higher robustness. Figure 1 shows two reliability curves, on the 

y-axis, versus 𝑁 (x-axis). The two curves are obtained for 𝑠𝑁
∗ =

2 (dotted line), 𝑠𝑁
∗ = 6 (solid line) and a confidence β =1e-6. 

 

 
 

FIGURE 1: PLOT OF 1- ϵ , k=2 AND k=6 FOR INCREASING 

𝑁 AND β =1e-6. 

                                                           
3 A constraint of (3) is a support constraint if its removal changes 

the optimal design. The set of support constraints (or support set) 𝒮 ⊆

 𝒟𝛿 is a k-tuple  𝒮 =  {𝛿(11), … , 𝛿(𝑖𝑘)} which gives the same solution as 

Thus, to better assess the generalization properties of an optimal 

design, the analyst must find the support set with the smallest 

cardinality possible. However, for the purposes of applying Eqn.  

(5) minimal cardinality is not required (although this practice 

yields the tightest bound). The search for the set of support 

constraints is often done numerically, [14]. 

 

 

4. RBDO BY SCENARIO  
 

A scenario RBDO formulation is: 

 

𝒮𝒫1(𝒟𝛿): =    {

arg min
𝑑,𝛾

 𝛾

𝑠. 𝑡.  𝑤(𝑑, 𝛿(𝑘)) ≤ 𝛾 

𝛿(𝑘) ∈  𝒞𝛿 ⊆ 𝒟𝛿

             (7) 

  

where 𝛾 ∈ ℝ. Hence, 𝒮𝒫1 seeks to minimize an upper bound to 

the worst-case performance function for all the elements in the 

data sequence. When the optimal cost is negative, the optimal 

design satisfies all the requirements for all observations. The 

freedom in choosing 𝒞𝛿  enables solving different problems.  For 

instance, the subset 𝒞𝛿  can be the full set of observations 𝒟𝛿 . 

Alternatively, 𝒞𝛿  can be used to eliminate the effects of outliers 

in the data sequence. Determining which scenario is an outlier is 

a process that might depend on the design variable itself. Using 

the worst-case performance function 𝑤 defined earlier as a figure 

of merit, and denoting as 𝐹𝑤 the empirical cumulative 

distribution of 𝑤 corresponding to 𝒟𝛿 , the subsample 

 

𝒞𝛿 = {δ ∈ 𝒟𝛿: 𝐹𝑤(𝛿,𝒟𝛿)
−1 (1 − 𝛼) ≤ 𝛾}               (8) 

 

only contains the 1 − 𝛼 percent of the data with the best 

performance. Note that making 𝛼 = 0 makes 𝒞δ(𝑑) = 𝒟δ. In 

this setting, the scenario program above can be written as: 

   

𝒮𝒫1(𝒟δ, α) ≔ arg min
𝑑, γ

{γ: 𝐹𝑤(𝑑,𝒟δ)
−1 (1 − α) ≤ γ}     (9) 

 

Another program of interest is: 

 

𝒮𝒫2(𝒟𝛿) ≔ arg  min
𝑑, 𝛾

{𝛾:
1

𝑁
∑ 𝟏𝑤(𝑑,𝛿(𝑖))>0

𝑁
𝑖=1 < 𝛾}    (10) 

 

where γ ∈ ℝ. Hence, (10) seeks the design point that minimizes 

the empirical probability of failure. As such, this formulation 

will be denoted as 𝒮𝒫2(𝒟𝛿). Note that 𝒮𝒫2(𝒟𝛿) has a piecewise 

constant constraint making gradient-based algorithms 

inapplicable. 

 

 

 

the original sample, i.e. 𝒮𝒫 (𝒮) = 𝒮𝒫 (𝒟𝛿) is a minimal support set if 

no further scenarios can be removed without changing the solution. 
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4.1 Identify Support Constraints 
 

A standard procedure to identify the set of support 

constraints consists in removing one scenario at a time from 𝒟𝛿  

and checking whether the optimized (𝑑∗, γ∗) obtained for 𝒟𝛿/i, 
where /i stands for a removal of the scenario i, is equal to the 

original solution.  If 𝒮𝒫 (𝒟𝛿) = 𝒮𝒫 (𝒟𝛿/i), then i is not a support 

scenario and removed from 𝒟𝛿 . The procedure when repeated 

converges to a set of support constraints. However, this 

procedure can be very time consuming (or even time infeasible), 

especially for large N and computationally intensive solvers 𝒮𝒫 . 

The program 𝒮𝒫 (𝒟𝛿/i),  will have run 𝑁 times with 𝑁 − 𝑘 

constraints, where k is the number of removed scenarios. The 

number of constraints 𝑁 − 𝑘 will be high for most of the 

procedure. 

 

 In this work, an efficient algorithm is proposed to identify 

𝑠𝑁
∗  for the optimal scenario decision θ∗ = (𝑑∗, γ∗). A higher 

efficiency is achieved by adding worst-case-scenario one-at-a-

time rather than removing scenarios. The procedure works as 

follows: 

 

1) Solve θ∗ = 𝒮𝒫(𝒟δ) and for initial guess θ0;  

2) Set the initial solution to an arbitrary initialization 

θ𝑜𝑙𝑑 = (𝑑0, γ0), e.g. close to the initial θ0; 

3) Initialize an empty set of support constraint 𝒮 ← ∅ 

4) For each δ ∈ 𝒟δ  and in correspondence of  θ𝑜𝑙𝑑  

compute 𝑤(𝑑, δ);  

5) Find the worst-case scenario constraint 𝑖 =

arg max 1𝑖 ≈ 𝑤(𝑑, δ(𝑖)), update the support set 𝒮 ←

𝒮 ∪ {𝑖}  and the scenario set 𝒟δ ← 𝒟δ/𝑖 
6) Compute optimal solution θ𝑛𝑒𝑤 = 𝑆𝑃(𝒮) for the initial 

(𝑑0, γ0) 

7) If 
||θ𝑛𝑒𝑤−θ∗||

|θ𝑛𝑒𝑤|
≤ 𝑟θ stop procedure and return the support 

set 𝒮 and its cardinality, 𝑠𝑁
∗ = |𝒮|; Otherwise, set 

θ𝑜𝑙𝑑 = θ𝑛𝑒𝑤 and go to step (4); 

  

The procedure converges when the relative errors between 

θ𝑛𝑒𝑤  and the initial θ∗ is less than a tolerance 𝑟θ. It returns a 

(possibly reducible) support set, i.e. set for which 𝑆𝑃(𝒟δ) =
𝑆𝑃(𝒮). An irreducible set of minimum cardinality can be 

obtained by removing elements from 𝒮, such that 𝑆𝑃(𝒟δ) =
𝑆𝑃(𝒮/𝑖). A stopping criterion θ𝑛𝑒𝑤  is introduced in the step (7) 

of the algorithm (e.g. 𝑟θ=1e-6) to avoid the procedure from 

getting stuck due to numerical approximations and local plateau 

in the (𝑑, γ) space. 

 

5. CASE STUDY: ROBUST CONTROL CHALLENGE 
 

A modified version of the benchmark problem on robust 

control design, see [10], is used to test the proposed RBDO 

method. The system is the two-mass spring system shown in Fig. 

2.  

 

 
 

FIGURE 2: THE TWO-MASS SPRING SYSTEM, 

BENCHMARK FOR ROBUST CONTROL DESING.  

 

A control force acts on the first mass, and the position of 

body 2 is measured. In the modified version of the system we 

further consider a non-linear spring constant 𝑘𝑛 a time delay 𝜏 

(i.e. a first order lag between controller signal 𝑢𝑐 and actuator 

response 𝑢) and an uncertainty factor 𝜆 on the loop-gain, due to 

multiplicative variation in observation, control gain and/or 

actuator failure. The resulting state-space equations governing 

the system dynamics are: 

 

𝑥1̈ =
𝑘𝑙

𝑚1

(𝑥2 − 𝑥1) +
𝑘𝑛

𝑚1

(𝑥2 − 𝑥1)3 +
λ𝑢

𝑚1

 

𝑥2̈ =
𝑘𝑙

𝑚2

(𝑥1 − 𝑥2) +
𝑘𝑛

𝑚2

(𝑥1 − 𝑥2)3 +
𝑤2

𝑚2

 

τ�̇� = 𝑢𝑐 − 𝑢 

 

where 𝑥1(𝑡) is the position of the first mass, 𝑥2(𝑡) is the position 

of the second mass, 𝑢(𝑡) is the actuator control input, 𝑘𝑙 is the 

linear coefficient of the spring, 𝑚1 mass of the first body, 𝑚2 

mass of the second body, 𝑤2 is a disturbance on the second body 

and λ𝑢 = (𝑢 + 𝑤1) combines the actuator response and the 

disturbance on the first body, 𝑤1. The goal of the problem is to 

design a linear feedback compensator such that the following 

reliability requirements are satisfied:  

 

1) Local closed-loop stability; 

2) Setting time: position of the mass 2 must fall between 

±0.1 after 15 seconds; 

3) Control effort, i.e. the control signal must fall between 

±1; 

 

These requirements lead to the performance functions 

𝑔(𝑑, 𝛿) = [𝑔1, 𝑔2, 𝑔3] ∈ ℝ3: 

 

𝑔(𝑑, 𝛿) = [

max1≤i≤nδ 
ℛ [s(i)] 

  max t≥15|x2(t)| − 0.1

maxt>0 |u(t)| − 1

] 

 

where 𝑠(𝑖) is the closed loop pole of the linearized system, and 

ℛ[ ] is real part operator. Note that the time domain requirements 

require simulating the time response of the system by numerical 

m 
 

m 
 

 

  
 

  
 

u
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integration. The state-space representation of the controller is 

given by:  

 
𝑥�̇� = 𝐴𝑥𝑐 + 𝐵𝑦
𝑢𝑐 = 𝐶𝑥𝑐 + 𝐷𝑦

                                 (11) 

 

where 𝑥𝑐 is the controller state, and 𝐴, 𝐵, 𝐶, 𝐷 are the controller 

matrices. The canonical form in Eqn. (11) can be conveniently 

rewritten in a single input single-input transfer function 𝐻(𝑠) =
𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷, where 𝐻 reads:   

 

𝐻(𝑠) =
𝑏3𝑠3 + 𝑏2𝑠2 + 𝑏1𝑠 + 𝑏0

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

 

  

The controller design is thus defined by the coefficient of 

the single-input transfer function 𝑑 =
[𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4] ∈ ℝ9. To enable the 

visualization of results only the uncertainty in the masses is 

considered. All other parameters assume the constant values 

prescribed in [10]. 𝑁 = 1000 observations are available and Fig. 

3 shows the elements in the data sequence 𝒟𝛿 , 𝛿(𝑖) =

[𝑚1
(𝑖)

, 𝑚2
(𝑖)

]𝑖 = 1, … 𝑁. 

 

 
 

FIGURE 3: THE 1000 OBSERVATIONS COLLECTED FOR 

THE 2 MASSES.  

  

It is worth emphasizing that thanks to the nonlinear 

dependency of the requirement function on the controller gains 

an a-priori probabilistic statement on the generalization 

guarantees cannot be made. For this problem, a-posterior 

assessment of the 𝜖-robustness will be considered for an 

optimized design. This will be done by a-posteriori enumerating 

the support constraints for a solution 𝑑∗.  

 

 

6. RESULTS AND DISCUSSION 
 

The system reliability performance is computed for a 

nominal baseline design 𝑑𝑛, see [10]. The corresponding failure 

probability is �̂�𝑓 = 0.734 (734 out of 1000 scenarios failed), 

whereas the maximum value of the performance functions 

𝑔
𝑗
(𝑑) = max

𝑖
𝑔𝑗 (𝑑, δ(𝑖)) leads to 𝑔(𝑑𝑛) =

[0.0007, 1.974, 0.202]. The worst scenario for 𝑑𝑛 is (𝑚1, 𝑚2) =
(1.1287, 0.1450) kg, for which the second body will have a 

maximum displacement of 𝑥2(𝑡 > 15) = ±2.074, thus 

exceeding of 1.974 the threshold requirement of ±0.1. Figure 4 

shows the individual and overall failure and safe domains for the 

design 𝑑𝑛. The size of the safe domain is the smallest for 

requirement 2.  

 

 
FIGURE 4: ON THE RIGHT PANEL, THE FAILURE DOMAIN 

(REGION IN RED) FOR THE BASELINE DESING AND THE 

SCENARIOS (WHITE DOTS). THE 3 PANELS ON THE LEFT 

SHOW THE INDIVIDUAL 𝐹𝑖(𝑑𝑛) FOR THE 3 REQUIREMENTS.  

 

TABLE 1: FAILURE PROBBAILITY, WORST-CASE 

PERFORMANCE AND OPTIMAL DESING.  

 

 

 𝒮𝒫1(𝒟δ, 0) 𝒮𝒫1(𝒟δ, 0.05) 𝒮𝒫2(𝒟δ) Nominal 

�̂�𝑓 0.981  0.057     0.175  0.734 

𝑔
1
 −0.0272 −0.013   0.069 7𝑒 − 4 

𝑔
2
 0.5925 1.576   3.054 1.974 

𝑔
3
 0.5925 0.193    1.406  0.202 

     
𝑎4 0.2238   0.5375   0.7600 0.5503  
𝑎3 0.6811 1.3346   1.9491 1.4175     
𝑎2 3.1275 2.4206 3.0497 2.6531 
𝑎1 2.3615 2.1689 2.7344 2.4802 
𝑎0 1.1833  0.8084 1.0594 1.0000  
𝑏3 −0.0982  2.4802 −0.0831  0.1324 
𝑏2 0.4702 0.6146   0.6358 0.3533 
𝑏1  0.5886  0.5265   0.7752  0.6005 
𝑏0 0.0777 0.0716   0.0981 0.0728  

 

 

The design approaches introduced above were used to seek 

optimal controllers. To this end, the design constraints 𝑑𝑛 −
0.8|𝑑𝑛| ≤ 𝑑 ≤ 𝑑𝑛 + 0.8|𝑑𝑛| are imposed. Two 

implementations of 𝒮𝒫1 were considered: the first one uses the 

full data set whereas the second one eliminates 𝛼 = 0.05 percent 

of the data.  Table 1 presents figures of merit and the optimal 

designs for the 3 approaches. 𝒮𝒫1(𝒟𝛿 , 0.05) and 𝒮𝒫2(𝒟𝛿) 

reduced considerably the failure probability compared to the 

nominal design. However, the 𝒮𝒫2(𝒟𝛿) design worsens the less 
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reliable scenario (e.g.  𝑔
2

= 3.054). Conversely, 𝒮𝒫1(𝒟𝛿 , 0) 

greatly reduced the consequences for the worst-case-scenario 

(e.g. 𝑔
2

= 0.5925), nonetheless, it failed to comply with the 

reliability requirements for most of the scenarios, thus attaining 

a large failure probability (𝑔
2

= 0.981). 

 

The 4 panels in Fig. 5 show the overall fail and safe region 

for the 4 designs, the nominal design (top-left panel), the design   
𝒮𝒫1(𝒟δ, 0)  (top-right), the design 𝒮𝒫1(𝒟δ, 0.05) (bottom-left) 

and 𝒮𝒫2(𝒟δ) (bottom-right). The 4 panels in Fig. 6 show the 

values of 𝑤(𝑑, 𝛿) against the scenario pairs (𝑚1, 𝑚2). In Fig. 6 it 

can be seen that 𝒮𝒫1(𝒟𝛿 , 0), top panel on the right, lowered the 

worst-case 𝑤(𝑑, 𝛿) values. However, in doing so, it kept most 

scenarios in the failure region (red circle markers). Conversely, 

𝒮𝒫2(𝒟𝛿), in the bottom-right panel, significantly reduced 

number of failed scenarios but worsening the extreme cases (not 

the different scale on the z-axes). Similarly, 𝒮𝒫1(𝒟𝛿 , 0.05) 

greatly improved the reliability of the system achieving a good 

compromise between worst-case mitigation, 𝑔 =
[−0.013, 1.576, 0.193], and minimization of the probability of 

failure, �̂�𝑓 = 0.057. 

 

Figure 7 presents the failure domains corresponding to 

𝒮𝒫1(𝒟𝛿 , 0.05). Compared to the nominal design (Fig. 4), a small 

contraction of the safe domain for requirement 3 can be 

observed. On the other hand, the size of the failure region defined 

by requirement 2 (which was acting as a bottleneck for the 

nominal design) was greatly reduced, thus providing a 

substantial gain in terms of reliability (only 57 scenarios could 

not comply with the reliability requirement against the 734 of 

the nominal design). 

 

 

6.1 Robustness Analysis 
 

The 𝜖-robustness of the scenario decision is examined by 

computing the number of support constraints 𝑠1000
∗ . Support 

constraints for the the program 𝒮𝒫1(𝒟𝛿 , 0) are identified using 

the support scenario identification procedure. A support set of 

size 𝑠1000
∗ =11 is obtained and further reduced to 𝑠1000

∗ =4 by 

removing scenarios from 𝒮. Equation (6) is used to obtain the 𝜖-

robustness of  𝑑∗: ℙ{𝛿 ∈ Δ: 𝑤(𝛿, 𝑑∗) > 0.5925} ≤ 𝜖(𝑠1000
∗ ), 

where γ∗ = 0.5925 and ϵ(4) = 0.0443 for a confidence 

parameter β = 1𝑒 − 6. In other words, a certificate of robustness 

for the optimal design (𝑑∗ , γ∗ ) = 𝒮𝒫1(𝒟δ, 0) has been 

provided. This ensures that, for 95.57 % of the unseen scenarios 

pairs (𝑚_1, 𝑚_2) and with high confidence (β = 1𝑒 − 6), the 3 

performances function will result 𝑔𝑗 ≤ 0.5925.   

 

The 4 support constraints are δ(1k) = (1.128,0.145), 

δ(2k) = (0.42,0.44), δ(3k) = (1.25,0.90) and δ(4𝑘) =
(0.67,0.34). Each panel in Fig. 8 displays on the y-axis the 

values for 𝑤(δ(𝑖𝑘), 𝑑∗), where 𝑑∗ = 𝒮𝒫1(𝒟δ, 0) and for the 4 

support constraints (solid lines). Each of the elements of 𝑑∗ is 

explored in the interval [𝑑𝑛 − 0.8|𝑑𝑛| ,  𝑑𝑛 + 0.8|𝑑𝑛|] as 

displayed on the x-axes. As expected, the 𝑑∗ values (vertical 

dashed lines) are the one corresponding to a global minimization 

of 𝑤. It can be observed: (1) the non-convex behavior of the 

constraints (e.g. see the panel for b_1 on the top right-hand side);  

(2) Competitive scenarios preventing from further reducing 𝑤 

(e.g. δ(2k) and δ(3k) in the 𝑏2 panel).  

 

 
FIGURE 5: THE FAILURE AND SAFE DOMAINS FOR THE 4 

DESIGNS.   
 

 

 
 

FIGURE 6: THE VALUES OF 𝑤(𝑑, 𝛿) (Z-AXIS) FOR THE 4 

DESIGNS AND THE 1000 PAIRS (𝑚1, 𝑚2).  
 

  

 
FIGURE 7: THE FAILURE DOMAIN FOR THE 𝒮𝒫1(𝒟δ, 0.05). 
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The problem 𝒮𝒫1(𝒟δ, 0.05) is somehow similar to the 

sample and discard approach presented in [7], but in a non-

convex setting. The non-convex scenario theory is still in its 

infancy, and at this early stage a sound theoretical base to assess 

𝒮𝒫1(𝒟δ, 0.05) robustness is not available. Nonetheless, it is 

intuitively arguable that the number of support constraints for 

𝒮𝒫1(𝒟δ, 0.05)will be larger than the one of 𝒮𝒫1(𝒟δ, 0), and 

likely influenced by the choice on 𝛼. In that is the case, the 

robustness of 𝒮𝒫1(𝒟δ, 0.05) will be lower. The analysis of the 

robustness of 𝒮𝒫1(𝒟δ, 0.05) can be seen as a future goal once a 

theoretical development is provided.  

 

Concerning 𝒮𝒫2, the optimized design is expected to have a 

high number of the support constraints, possibly close (or even 

equal) to N. Further verification is required, however, this is 

potentially due to the high-complexity (in the scenario support 

sense) of a decision connected to a mean operator (to compute 

the probability of failure in the constraint). In other words, 

removal of any of the scenarios will affect the estimate 
1

𝑁
∑ 𝟏𝑤(𝑑,δ(𝑖))>0

𝑁
𝑖=1  and, consequently, the optimal design 

parameter γ∗.  

 

 
7. CONCLUSION 

 

In this paper, a framework for reliability-based-design 

optimization based on Scenario theory has been investigated. By 

not requiring an explicit prescription of the uncertainty, the 

resulting optimal designs are exempt from the modeling error 

caused by such a practice. Several scenario-based formulations 

making direct use of available data are proposed and their 

corresponding robustness properties are assessed using scenario 

theory. Furthermore, a chance-constrained optimization 

formulation is proposed for eliminating the effects that outliers 

in the data set have in the resulting optimal design. 
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