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Scenario-based approaches to Reliability-Based Design-Optimization were recently proposed by the authors,

Rocchetta et al. (2019). Scenario theory makes direct use of the available data thereby eliminating the need for

creating a probabilistic model of the uncertainty in the parameters. This feature makes the resulting design exempt

from the subjectivity caused by prescribing an uncertainty model from insufficient data. Most importantly, scenario

theory renders a formally verifiable bound to the probability of failure. This bound is non-asymptotic and holds

for any probabilistic model consistent with the available data. In this article we seek designs that minimize a

combination of cost and penalty terms caused by violating reliability constraints. Similar to Conditional-Value-

at-Risk programs, the proposed optimization approach is convex, thereby easing its numerical implementation.

As opposite to a Conditional-Value-at-Risk method, a model for the uncertainty is not required and the method

provides bounds on the reliability, which is valuable information to assess the robustness of the prescribed design.

Furthermore, the proposed approach enables the analyst to shape the distribution of the design’s performance

according to a given value-at-risk. This is done by minimizing the empirical approximation of the integral of the

design’s performance in the loss/failure region. The effectiveness of the approach is tested on an easily reproducible

numerical example with its strengths discussed in comparison to traditional methods.

Keywords: Scenario Optimization, Reliability Bounds, Conditional-Value-at-Risk, Constraints Relaxation, Uncer-

tainty

1. Introduction

Reliability-Based Design-Optimization (RBDO)
seeks a design which minimizes cost such that
a set of reliability-based constraints are satisfied.
For instance, geometries of components must be
selected to minimize manufacturing costs while
the probability of facing structural failures re-
mains within specification. A standard approach
to RBDO problems involves two nested loops, an
outer loop searches for an optimal design whereas
an inner loop evaluates its cost and reliability. The
majority of the existing RBDO methods rely on a
suitable model of the uncertainty, which is gen-
erally needed to estimate the failure probability
in the inner loop, e.g., via Monte Carlo integra-
tion. However, a model of the uncertainty can
be challenging to prescribe because of complex
parameter dependencies and lack of data in low-
probability regions. This will have an impact in a
design optimized using such a model and, in prac-
tice, can potentially lead to unexpected reliability
performance and, in the worst case, to hazardous
situations and severe failures. Furthermore, the
cost and the reliability requirements often define

conflicting objectives. To overcome these diffi-
culties, a chance-constrained and distribution-free
reformulation of the RBDO program is advisable.

Chance-Constrained Programs (CCPs) mini-
mize the design cost while constraining its reli-
ability to a satisfactory level. CCPs are gener-
ally NP-hard, usually non-convex, and chance-
constraints on joint probabilistic requirements are
significantly more challenging than individual
constraints, Özgün Elçi et al. (2018). Non con-
vexity is caused by the form of the requirement
functions, whereas sampling-based approaches to
the estimation of the failure probability intro-
duce discontinuities that make gradient-based al-
gorithms inapplicable. Intractability of CCPs lead
to alternative solution techniques, e.g., convex-
ification techniques have been introduced to re-
place the non-convex set of feasible designs with
a convex inner approximation. Specifically, re-
placing a failure probability constraint with the
Conditional Value-at-Risk (CVaR) improve the
numerical tractability of the optimization, see
for instance the work of Rockafellar and Royset
(2010) on buffered failure probabilities. CVaR
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constraints are guaranteed to be convex in the
uncertainty space and offer control on a whole
portion of the tail of the distribution and not only
a quantile.

One of the main drawbacks of a CVaR con-
straint versus a failure probability constraint is that
the former is statistically less stable, i.e., an outlier
can significantly change the value of the estimated
CVaR. Both failure probability and CVaR estima-
tion rely on a good model describing the tails of
the distribution (which can be hard to provide).
This limitation pushed research toward the devel-
opment of distributionally robust CCPs. These op-
timization methods seek a design which is reliable
for a whole set of uncertainty models. Evidence
theory, Possibility theory, Fuzzy sets and Credal
sets theory are some of the most widely applied
concepts, see, e.g., Beer et al. (2013). Only a
limited amount of works investigated given-data
(model-free) CCPs to identify an optimal design
by making direct use of the data and without
prescribing an uncertainty model.

Scenario-based decision-making theory offers a
powerful framework to solve CCP according to
data. Scenario optimization has been applied to
tackle prediction Campi et al. (2015), regression,
machine learning, and optimal control problems
Rocchetta et al. (2019). To the best of the authors’
knowledge, only a few works investigated applica-
bility of Scenario theory to RBDO problems. Roc-
chetta et al. (2020) developed a Scenario RBDO
framework to solve RBDO problems and a power-
ful prospective-reliability certificate was obtained
for the optimized design, i.e., an upper bound
on the probability of facing catastrophic failures
(failures of magnitude greater than the historically
observed worst-case). However this certificate
only focused on extreme cases, and a prospective-
reliability bound on the failure probability was not
provided.

In this work we extend the work of Rocchetta
et al. (2020) to provide an upper and lower bounds
on the probability of failure. A novel scenario pro-
gram for RBDO is proposed based on the theoreti-
cal results of Garatti and Campi (2019). This opti-
mization scheme minimizes a weighted sum of the
cost and penalty terms for constraint violations.
The proposed scenario program shares similar fea-
tures when compared to a traditional Conditional-
Value-Risk reliability optimization, i.e., it ensures
convexity for a wide class of reliability perfor-
mance functions and offer control on a whole por-
tion of the reliability performance tail and not only
a quantile. In contrast, a prospective-reliability
certificate can be obtained for the optimized de-
sign. This certificate bounds the probability of
exceeding a predefined value-at-risk level, i.e.,
it is a lower and an upper bound on the failure

probability or on the tails of the distribution of the
reliability performance function. This certificate
is obtained given-data and without the need to
prescribe a model (or a set of models) of the un-
certainty. Thus, it is exempt from the subjectivity
caused by prescribing a model for the distribution
tails from insufficient data.

The rest of the paper is organized as follows:
Section 2 presents the mathematical background
on RBDO and CVaR approximation. Section
3 introduces Scenario optimization theory and
theoretical robustness guarantees. In Section 4
the newly proposed scenario RBDO programs are
presented. Section 5 exemplifies the method on an
easily reproducible case study. Section 6 closes
the paper with a discussion on the results.

2. Mathematical background

A reliability chance-constrained program seeks an
optimal design d� as follows:

d� =argmin
d∈Θ

{J(d) : Pf (d) < 1− α}

Pf (d) =

∫
F(d)

fδ(δ)dδ
(1)

where d are the optimization variables constrained
in a closed convex set Θ ⊆ R

nd , J(d) : Rnd →
R is a convex cost function, α ∈ [0, 1] is a
probabilistic level constraining the design’s failure
probability Pf (d). Note that α = 1 corresponds
to an admissible failure probability equal to zero.
Pf (d) is a multidimensional integral of the un-
certainty model, fδ(δ), a joint PDF of uncertain
factors δ ∈ Δ ⊆ R

nδ , computed over the com-
posite failure domain F(d). The domain F(d)
is generally defined by ng reliability requirements

F(d) =
ng⋃
j=1

Fj(d), where

Fj(d) = {δ ∈ Δ : gj(d, δ) ≥ 0}
are the individual failure regions induced by the
reliability performance functions gj : R

nd ×
R

nδ → R. A design d satisfies all requirements
for δ if gj(d, δ) < 0, ∀j ∈ {1, .., ng}. An
equivalent formulation of program (1) isa ,

d� = argmin
d∈Θ

{J(d) : F−1
w (α) < 0} (2)

where F−1
w (α) is the Value-at-Risk at level α, i.e.,

the α-percentile of the distribution of the worst-
case performance function

w(d, δ) = max
j∈{1,..,ng}

gj(d, δ)

aThe constraint Pf (d) < 1 − α implies P[w(d, δ) ≥ 0] <

1− α which is equivalent to F−1
w (α) < 0
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induced by the design d and for the uncertainty
model fδ . When w(d, δ) < 0 the design d satisfies
all the reliability requirements for the uncertainty
realization δ.

A solution of (2) is often computationally de-
manding to obtain. This is due to the multidimen-
sional integral (1) which must be solved numerous
times. This issue has led to the development
of approximations, e.g., Most Probable Point or
sample-based methods. Given DN = {δ(i)}Ni=1
samples drawn from fδ , the integral in (1) can be
approximated by,

P̂f (d) =
1

N

N∑
i=1

1w(d,δ(i))≥0 (3)

where 1w(d,δ(i))≥0 is the indicator function for the

failure condition w(d, δ(i)) ≥ 0. Similarly, the
empirical CDF of w is computed by,

Fw(d,DN ) (W ) =
1

N

N∑
i=1

1w(d,δ(i))≤W (4)

which gives the empirical quantile at level α,
F−1
w(d,DN ) (α). Once an estimator F−1

w (α) or the

empirical Pf based on a Monte Carlo sample is
obtained, an optimization routine can be readily
applied. Note that an uncertainty model fδ is
a key component of the process. Furthermore,
F−1
w(d,DN ) (α) is a discontinuous function and this

further complicates solution of program (2).

The feasibility set of the chance-constrained
program (2) for a given α level is Θα ⊆ Θ, i.e.,
the set of designs satisfying the given constraints,
Θα = {d ∈ Θ : F−1

w(d,DN ) (α) ≤ 0}. With the

exception of logarithmically concave distributions
fδ , Θα is non-convex. Hence, the optimization
problem is generally non-convex even when the
reliability performance functions are convex in d
for any fixed δ. Also, the constraint in (2) gives
no guarantees on the severity of failures, i.e., the
value of w(d, δ) can take arbitrarily large values.
If the value of w when w > 0 is a measure of
the severity of the reliability violation, the analyst
might want to control not only the failure prob-
ability but also the shape of the upper tail of w.
This design criterion will be considered below.

This concept is depicted in Figure 1 which
shows an example of reliability CCP. The CDFs
of w for three feasible designs are presented. The
designs satisfies the probabilistic constraint for the
level α and d2 leads to the lower failure probabil-
ity. However, this does not imply d2 might lead
to failures with lower severity where w can take
arbitrarily large values.

w(d)

0

1

  

failsafe  

Fw(d) 

Pf <1-

Fw(d2) Fw(d1) Fw(d3) 

Fig. 1. CDFs of the worst-case performance w associated to

3 feasible designs, i.e., d for which F−1
w (α) ≤ 0. d2 is the

most reliable but with no guarantee on the severity of failures.

2.1. CVaR approximation
Conditional Value-at-Risk has been used to ap-
proximate the probabilistic constraint in (2) and
for any continuous distributions fδ is defined as
follows:

CV fδ
α (w) =

1

1− α

1∫
α

F−1
w (β)dβ (5)

CV fδ
α (w) is a continuous function of α and is an

expectation over a ‘portion’ of the upper tail of
the distribution of w, i.e., E[w|w ≥ F−1

w (α)].
When the constraint in (2) is satisfied this does
not imply the integral (5) is less or equal to zero.
On the other hand, for the non-decreasing inverse

CDF we have
∫ 1

α
F−1
w (β)dβ > F−1

w (α) and, thus,

a CV fδ
α ≤ 0 implies F−1

w (α) ≤ 0. A CVaR
constrained approximation of program (2) is as
follows:

d� = argmin
d∈Θ

{J(d) : CV fδ
α (w(d, δ)) ≤ 0} (6)

where CV fδ
α ≤ 0 offers a convex inner approxi-

mation of the feasibility set Θα. This makes opti-
mization problem (6) convex for any performance
functions gi(d, δ) convex in db, thus simplify-
ing its solution. Furthermore, this formulation
guarantees a conservative result in terms of fail-
ure probability, see e.g., Rockafellar and Royset
(2010). Figure 2 illustrate this concept by pre-
senting feasible/unfeasible regions for a VaR con-
strained program (red regions) a CVaR program
(6) when applied to a linear limit state function
w = d1 + δ1 − d2δ2 with α = 0.1 and α = 0.9.
It can be noticed that the feasible set induced by
(6) is always contained in the feasibility set of

bThis implies that w is also convex as the maximum operator

preserves convexity
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program (2). Moreover, even for a linear w the
feasibility set of program (2) is non-convex, see
α = 0.1.

A sampling-based estimator of the CVaR is

CV DN
α (w) =

∑N
i=1 w(d, δ

(i))1c(i)∑N
i=1 1c(i)

(7)

where 1c(i) is the indicator function for the con-

dition c(i) = {w(d, δ(i)) ≥ F−1
w(d,DN ) (α)}, i.e.,

a condition for which w(d, δ(i)) exceeds the α-
quantile of the empirical distribution of w eval-
uated for δ(i) ∈ DN . Program (6) has, however,
some drawbacks: 1) CVaR estimation is sensitive
to the uncertainty model fδ especially in the tails
regions; 2) A CVaR constraint can be very strin-
gent and the convex inner approximation of Θα
potentially empty for a level α.

-5 -4 -3 -2 -1 0 1 2 3 4
-5

0

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

d1

CV0.1(w)>0

Fw
-1(0.1)>0

CV0.9(w)<0

Fw
-1(0.9)<0

CVV .9 w)<0

00<990(FFw

CVaR-unfeasible VaR-unfeasible  =0.1

CVaR-feasible VaR-feasible  =0.9 

d2

Fig. 2. Feasible/unfeasible set of designs (d1, d2) induced by

VaR and CVaR constrained programs (2) and (6).

3. Scenario theory

Consider the probability space Δ with associated
σ-algebra F and a stationary probability measure
P, see Calafiore and Campi (2006). In practice,
the probability P is unknown and only a data set
DN = {δ(i)}Ni=1 ∈ ΔN containing N realiza-
tions of the uncertain parameters is available. In
scenario optimization programs each realization
δ(i) ∈ DN is a scenario and a scenario RBDO
program SP(DN ) can defined as follows:

min
d ∈ Θ

{J(d) : d ∈ Θδ(i) , ∀δ(i) ∈ DN} (8)

where Θδ(i) = {d ∈ Θ : w(d, δ(i)) ≤ 0} is
the feasibility set induced by the ith scenario and
the set DN defines N scenario constraints which
can be used to replace probabilistic constraints in
classical CCPs. The optimized design solution of
SP(DN ) is d�.

Scenario theory can be used to obtain a
prospective-reliability certificate for d�, i.e., how

well it generalizes to yet unseen situations δ ∈ Δ,
see, e.g., Campi and Garatti (2008) . To explain
the scenario prospective-reliability it is useful to
introduce the concepts of violation probability and
support set.

Definition: (Violation probability, or risk) The
probability

V (d�) = P[δ ∈ Δ : d∗ �∈ Θδ]

is called violation probability. Given a reliability
parameter ε ∈ (0, 1), a design d� is called ε-
robust (or ε-feasible) if V (d) ≤ ε, Campi and
Garatti (2018). An ε-robust solution will comply
with the requirements induced by new scenarios
with probability no less than 1-ε.

Definition: A set of support constraints (or
support set) S ⊆ DN is a k-tuple S =
{δ(i1), ..., δ(ik)} for which the solution of SP(S)
is the same as SP(DN ). The set S is of minimal
cardinality if no further scenarios can be removed
without changing the optimal design d�. The
cardinality of the set of support constraints is
s�N = |S|, where | · | is the cardinality operator.

The violation probability, V (d�) and sup-
port set size s�N are inherently stochastic, as
they depend on the random set of scenarios
DN . However, it is proven that for convex
scenario programsc, the distribution V (d�) is
dominated by the Beta distribution, Campi and
Garatti (2008). This result provides a power-
ful robustness-monitoring capability, a bound on
V (d�) which is guaranteed to hold distribution-
free and non-asymptotically. However, a Θδ(i) ,
defined as in (8), implies that a feasible optimal
design d� will have an empirical failure proba-

bility P̂f (d
�) = 0, see eq.(3). This requirement

might not only make the program (8) infeasible,

i.e.,
⋃N

i=1 Θδ(i) = ∅, but might also lead to high
cost values. In the next section we adopt the
strategy proposed by Garatti and Campi (2019) to
mend for these deficiencies.

4. The proposed Scenario program

Consider the scenario program:

〈d�, ζ�〉 = argmin
d∈Θ
ζ≥λ

{J(d) + ρ
N∑
i=1

(ζ(i) − λ) :

w(d, δ(i)) ≤ ζ(i), δ(i) ∈ DN}
(9)

where ζ ∈ R
N represents a vector of slack vari-

ables associated to the N reliability constraints,

cUnder the existence, uniqueness and non-degeneracy assump-

tions and for any stationary P and N iid δ.
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ρ > 0 is a constant value used to penalize
constraint violations, an optimization parameter
weighting the importance of minimizing reliabil-

ity violation
∑N

i=1(ζ
(i) − λ) versus the design

cost J(d), and λ ∈ R is a value-at-risk level
which define a lower bound on the slack variables.
Program (9) shares some similarity with the CVaR
constrained optimization program (6). Program
(9) with λ = 0 seeks a design which minimizes
the cost J(d) and the sum of reliability violations.
This implies a minimization of the integral of
the distribution of w in the failure region, i.e., a
combination of cost and constraint in (6).

A λ = 0 implies that all the non-zero terms in
the vector ζ� correspond to scenarios falling into
the failure region. The magnitude of ζ(i) > 0 is an
indicator of the severity of the reliability violation,
i.e., scenarios for which ζ(i) = w(d, δ(i)). In
contrast, a λ �= 0 defines a program that seeks an
optimal design which minimizes a combination of
cost and violation of the constraints w(d, δ) ≤ λ.
Hence, a λ < 0 means that program (9) is impos-
ing a more stringent constraint that w(d, δ) ≤ 0
on each scenario. Conversely, λ > 0 indicates a
program that relaxes the constraint violation. In
the context of CVaR this constraint can be inter-
preted asF−1

w (α) ≤ λ, where values of λ different
from zero denote a relaxation or tightening of the
constraints.

Note that the penalty terms in (9) enable the
analyst to exercise a certain degree of control over
the failure event besides the failure probability and
can be conveniently used to: 1) Improve feasibil-
ity of reliability chance-constrained programs; 2)
Modulate the distribution of w in the loss/failure
region, i.e., minimizing CV DN

α (w) where the
value at risk is F−1

w (α) = λ; 3) Trade reliability
to improve the cost function, by tuning ρ. When
ρ → ∞ the program goes back to the original
formulation in (8) where no constraint violation
is allowed.

The work of Garatti and Campi (2019) provides
a way to quantify the prospective-reliability in the
context of optimization with relaxation of scenario
constraints. Specifically, for any Δ and P it holds
that:

P
N [ε(s�N ) ≤ V (d�) ≤ ε(s�N )] ≥ 1− β (10)

where ε and ε are lower and upper bounds on
the violation probability V (d�) = P[δ ∈ Δ :
w(d�, δ) > λ], β ∈ [0, 1] is a confidence level
set by the user, e.g., β = 10−8 means almost
certainty, and s�N = |S| is the number of sup-
port constraints of the scenario program (9). The
support set S accounts for violated constraints,
ζ(i) > λ, and active constraints, w(d, δ(i)) = λ,

as follows:

S = {δ(i) : ζ(i) > λ ∨ w(d, δ(i)) = ζ(i)} (11)

Fixing a confidence level β and for λ = 0 Eq.
(10) gives a lower and upper bound on the design
failure probability, i.e.,

P[δ ∈ Δ : w(d�, δ) ≥ 0] ∈ [ε(s�N ), ε(s�N )]

where ε(k) = max{0, 1− t(k)}, ε(k) = 1− t(k)
and [t, t] are solutions a polynomial equation in t,
see Theorem 4 Garatti and Campi (2019):

(
N

k

)
tN−k − β

2N

N−1∑
i=k

(
i

k

)
ti−k

− β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0 (12)

The bounds [ε, ε] hold non-asymptotically, free
from a model of the uncertainty and for any
RBDO problem which the performance functions
gj(d, δ), j = 1, .., ng and the cost J(d) are
convex in d.

5. Numerical Example

The proposed method is tested on a simple RBDO
problem having multiple, competitive, algebraic
performance functions. The problem has ng = 2
reliability requirements, modified from Groote-
man (2011), nd = 2 design variables, and nδ = 2
uncertain factors. A low dimensional uncertainty
space is selected to ease the visualization of the
results, however, for scenario programs the di-
mension nδ is inconsequential Rocchetta et al.
(2019). The two reliability performance functions
are,

g1(d, δ) = −d1+δ1−0.532δ2−2d2(δ1−δ2)
2

g2(d, δ) = −d1(1− δ2)− 0.1064δ21 − d2δ
3
1

and the worst-case performance is just w(d, δ) =
max(g1, g2) and is a convex function in d but not
in δ. The optimization problem seeks a reliable
design (d1, d2) in [−5,+5]2 so that a cost function

J(d) = −∑2
i=1 di is minimized. The MAT-

LAB’s fmincon optimizer and the ‘sqp’ algorithm
are the numerical tools used to solve the prob-
lem. A baseline design dbl = [2, 3] is arbitrarily
selected for comparison and is the initial guess
provided to the solver.

We consider two sets of scenarios D103 and
D105 obtained from an unknown stationary Data-
Generating Mechanism (DGM). Figure 3 displays
the sets with black round markers and red dia-
mond markers, respectively. The data set with



Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

N = 103 samples is used the optimization rou-
tines whilst the set with N = 105 scenarios is
considered unavailable for the RBDO tasks and
used to validate the prospective-reliability bounds.
It can be noticed that the DGM (designed by
the authors but not used for RBDO) generates
outliers with a small probability and those are
not captured adequately by the smaller set D103 .
This stationary DGM was designed to test the
scenario prospective-reliability bounds [ε, ε], see
Section 4, which must hold with high confidence
and independently from the stationary probability
P generating the data.

Fig. 3. The two sets of scenariosD103 , round black markers,

and the validation set D105 , diamond red markers.

The proposed scenario program (9) is used to
solve the proposed RBDO problem. The weight
of the reliability violation is set to ρ = 100 and
N = 103 scenario constraints on w have to be
met for the new design to be feasible.

5.1. Results for program (6)
Program (6) is used to solve the RBDO problem
and an α = 0.85 is selected to constrain the
probability of facing w > 0. A Gaussian mixture
model with 5 mixtures is fitted to D103 and used
to estimate the CVaR constraint on w. Table 1
compares the reliability performances of the base-
line design, dbl, and the optimized d∗ resulting
from program (6). The design cost J(d), the

CVaR CV
D103

0.95 (w) the failure probability estima-
tors for joint and individual requirements and the
empirical maximum of worst-case performance
w(d) = maxi w(d, δ

(i)) are proposed as figures
of merit. Program (6) improves the reliability of

the system substantially from P̂f = 0.833 for

dbl to P̂f = 0.139 which results, as expected,

0.139 ≤ 1 − α. The CVAR is also reduced, from

CV
D103

0.95 (w) = 328 to only CV
D103

0.95 (w) = 1.27,
thus leading to an overall mitigation of the severity
of failures. However, the total cost of the design
J(d) increased from -5 to about -0.57 and this is
due to the existing trade-off between system cost
and its reliability.

5.2. Results for λ = 0 and increasing N

Program (9) with λ = 0 is used to solve the
RBDO problem. A violation of a scenario con-
straints occurs when ζ(i) > 0, that is, the ith

scenario fails to comply with at least one of the
reliability requirements g1 or g2. Figure 4 presents
the optimized vector of slack variables ζ� (red
dashed line) and w(d�, δ(i)) (blue solid line) for

the scenarios δ(i) ∈ D103 and in correspondence
of the optimum design d�. The empirical CDFs
of w(d�, δ(i)) and ζ� are presented in the bottom
panel and compared to the result of the CVaR
program (dashdotted line). It can be observed that
for each ζ(i) > 0 the corresponding reliability vi-
olation is w(d, δ(i)) = ζ(i) and thus, as expected,
the proposed method minimizes a combination of
J(d) and the integral of w in the failure region

expressed as a sum of ζ(i). The last column in
Table 1 presents the reliability performances of the
proposed program, d�, which slightly penalizes
the price for a gain in reliability when compared
to program (6) and greatly improves the reliability
compared to dbl.

The prospective-reliability of d� depends on
the number of active and violated constraints, see
equation 10, which results s�N = 146. For a
high confidence β = 10−8 this leads to P[δ ∈
Δ : w(d�, δ) ≥ 0] ∈ [ε(s�N ), ε(s�N )], where
[ε(s�N ), ε(s�N )] = [0.0834, 0.2282]. This is a pow-
erful result which assures that the ‘true’ Pf (d

�)
will result at worst 0.2282 and not better than
0.0834, hence informing the analyst on the ro-
bustness of d� against the uncertainty affecting the
DGM (due limited availability of data).

To investigate prospective-reliability bounds on
Pf we solve problem (9) for an increasing avail-
ability of scenarios from N = 100 to N =
2500. Figure 5 shows the given data estimator

P̂f (d
�), solid line, and its scenario bounds, red

area, while Table 2 presents the numerical results
of the analysis. As expected, the prospective-
reliability bounds get tighter for an increasing
availability of samples and always include the
failure probability estimator. Tighter bounds are
due to the increasing knowledge on the underlying
P generating the data for higher N .
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Table 1. Comparison between the reliability of dbl, the optimal

designs resulting from programs (6) and (9).

Design from dbl d∗ d�

program - (6) (9)

(d1, d2) (2,3) (0.565,0.012) (0.40,0.021)

Reliability & Performance (with D103 )

J(d) -5 -0.577 -0.425

CV
D

103

0.95 (w) 328.2 1.27 1.084

P̂f (d) 0.833 0.139 0.146

P̂f,1(d) 0 0.081 0.08

P̂f,2(d) 0.833 0.058 0.066

w(d) 2231 5.75 6.67

Failure

Safe

Failure

Slack var 
Scenario prog.

CVaR-cons.

Fig. 4. The worst-case performance w(d�, δ), solid line, and

ζ�, dashed line, from D103 (the top panel). Their empirical

CDFs and w(d∗, δ) from program (9), the bottom panel.

Fig. 5. The estimated failure probability P̂ (d�) and the

scenario bounds on the failure probability for an increasing

number of scenarios N .

5.3. Results for λ �= 0

Scenario program (9) is tested on the RBDO prob-
lem for λ ∈ [−1,+1] and Table 3 summarizes
the results. It can be observed that small λ values
lead to wider scenario bounds on P[w(d�, δ) ≥ λ].
For instance λ = −1 leads to a (random) number
of support constraints s�103 = 203 , which corre-

spond to a P[w(d�, δ) ≥ −1] ∈ [0.129, 0.294].
In contrast, λ = 1 leads to s�103 = 24 and thus a
tighter bound P[w(d�, δ) ≥ 1] ∈ [0.004, 0.069].
The latter means that no more than 6.9% of the
unobserved scenarios will result in a worst-case
performance w ≥ 1 for the corresponding d�.
Intuitively, the tighter bounds on λ = 1 are due to
the weaker statement on the tails of w. Differently,
the probabilistic statement P[w(d�, δ) ≥ −1] is
‘stronger’ as it is made on a wider portion of
the tail of w. However, it is also less guaran-
teed and results in wider prospective-reliability
bounds. A validation analysis of the scenario
bounds is proposed and ‘true’ violation probabil-
ity P[w(d�, δ) ≥ λ] estimated over the larger data
set D105 , see Figure 3. Results of this analysis
are presented in Table 3 and it can be seen that
the scenario bounds always includes the ‘true’
violation probability.

The scenario bounds are further investigated by
solving the optimization problem for N = 100
and N = 103. Figure 6 shows the resulting
bounds [ε(s�N ), ε(s�N )] (red areas) and the true
violation probability estimated with D105 . It can
be observed that in correspondence of λ = 0 we
have bounds on the system failure probability. In
general, these bound might be slightly different
from the one obtained in Section 5.2 since s�N is
a random number which depends on the available
DN .

    f  

Fig. 6. Prospective-reliability bounds for N = 100 and N =
103 scenarios λ ∈ [−1,+1] and ‘true’ violation probability

P[δ ∈ Δ : w(d�, δ) ≥ λ] (dashed line).

6. Discussion and Conclusion

This paper introduces a new scenario program
with relaxed constraints to solve RBDO problems
given-data. The proposed method can be used
to identify a reliable design which minimizes a
combination of system cost and violation of reli-
ability requirements without prescribing a model
for the uncertainty. The relaxation of constraints
can be conveniently used to control the severity of
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Table 2. Optimal d� for λ = 0 and increasing N . Comparison between reliability and scenario ε-feasibility (β = 10−8).

N 100 600 900 1500 2000

d1 0.1973 0.4047 0.4519 0.4617 0.5245

d2 0.0319 0.0210 0.0162 0.0227 0.0236

J(d) -0.2293 -0.4257 -0.468 -0.4844 -0.5481

Pf 0.17 0.153 0.146 0.142 0.13

s�N 18 92 133 214 261

[ε(s�N ), ε(s�N )] [0.016,0.489] [0.075,0.2634] [0.082,0.235] [0.09,0.208] [0.086,0.185]

Table 3. Scenario bounds on d� obtained for λ ∈ [−1,+1] and comparison with the ‘true’ V (d�) estimated using D105 .

Scenario optimization (with D103 )

λ -1 -0.6 -0.2 +0.2 +0.6 +1

d� [1.35,0.023] [0.925,0.023] [0.925,0.023] [0.36,0.022] [0.29,0.02] [0.34,0.015]

J(d�) -1.37 -0.95 -0.56 -0.378 -0.31 -0.35

s�
103

203 198 172 105 45 24

[ε(s�
103

), ε(s�
103

)] [0.129,0.294] [0.124,0.288] [0.104,0.259] [ 0.053,0.179] [0.015,0.1] [0.004,0.069]

Reliability validation using the set D105

P[w(d�, δ) > λ] 0.228 0.219 0.186 0.1 0.042 0.02

violation in the failure region and recent results
in scenario theory allows computing bounds on
the failure probability of the optimized design for
any function w(d, δ) convex in d. These bounds
are independent of the underlying data-generating
mechanism (hold for any model fδ consistent with
the data) and are non-asymptotic. This is a power-
ful robustness monitoring capability which clearly
reflects the current state of knowledge and helps
to avoid overconfidence on the reliability of the
optimized design.
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