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This work investigates new generalization error bounds on the predictive accuracy of Extreme Learning Machines
(ELMs). Extreme Learning Machines are a special type of neural network that enjoy an extremely fast learning
speed thanks to the convexity of the training program. This feature makes ELMs particularly useful to tackle online
learning tasks. A new probabilistic bound on the accuracy of ELM is prescribed thanks to scenario decision-making
theory. Scenario decision-making theory allows equipping the solutions of data-based decision-making problems
with formal certificates of generalization. The resulting certificate bounds the probability of constraint violation
for future scenarios (samples). The bounds hold non-asymptotically, distribution-free, and therefore quantify the
uncertainty resulting from limited availability of training examples. We test the effectiveness of this new method on
reliability-based decision-making problem. A data set of samples from the benchmark problem on robust control
design is used for the online training of ELMs and empirical validation of the bound on their accuracy.
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1. Introduction
In the last decade, artificial intelligence and ma-
chine learning (ML) techniques grew in popularity
within industry, in the medical field, finance and
academia. This huge success is mostly due to the
growing availability of computational resources
and the ability of ML models to tackle complex
engineering tasks directly from large volumes of
data. ML models have proven to be a valuable
asset in many reliability engineering and system
safety applications and Xu and Saleh (2021) re-
cently reviewed ML-based approaches to fault de-
tection, remaining useful life estimations, and for
maintenance tasks Rocchetta et al. (2019). Despite
the many success stories, the use ML model for
safety-critical applications remains challenging.
Some of the main challenges can be summarized
as follows.
Exhaustive testing: Limited coverage of the event
space due to lack of data concerning rare failure
or other low-probability events. How to quanti-
tatively define ‘Exhaustive’ for specific safety-
critical applications?
Explainable results: Classical ML models are
often complex and work as black boxes inducing
a lack of trust or practitioners when the model has
to be used for safety-critical application.
Regulatory barriers: A lack of standards dedi-
cated to the use of ML on safety-critical appli-
cations. Lack of clear regulation concerning lia-
bilities because of failures of ML models. Also,
several ML methods required environment-based

learning. This may lead to a (seemingly not ac-
ceptable) public exposure to risks.
Non-stationarity and adaptability: Data are of-
ten assumed generated from a stationary (albeit
unknown) probability distribution. There is only a
limited number of foundation mathematical works
that deal with non-stationary probability and re-
lated issues in ML.

Machine learning models are usually trained
from static data and the more accurate results are
obtained for large datasets and from an exhaustive
exploration of the event space. In many reliability
applications, however, the data set size may be
small and new data not representative of past sit-
uations (non-stationary changing environments).
Online learning and generalization error analysis
methods try to assess some of these issues by
continuously updating/re-training ML models and
by assessing their reliability under lack of data.

An Extreme Learning Machine is a special type
of artificial neural network but with non-tunable
input weights, Huang et al. (2006). The architec-
ture of ELM includes (generally) a unique layer
of hidden neurons. The tunable output weights
can be optimized analytically, and thus very ef-
ficiently. This makes ELMs very useful to tackle
online learning problems and real-time decision-
making tasks. The accuracy and robustness of
ELMs are major concerns for ML analysts, es-
pecially if these models are used within safety-
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critical use cases. A lot of research has been de-
voted to adders the robustness and generalization
of ML models, for instance, Luca Oneto Oneto
(2018) compared generalization error bounds for
ML models derived from re-sampling strate-
gies, complexity-based methods, compression-
based methods, and PAC-Bayes bounds and oth-
ers. Test-based (re-sampling) methodologies are
often based on an heuristic estimation of the error
probability of the model and typical examples are
the k-fold cross-validation method Stone (1974),
bootstrapping Isaksson et al. (2008), jackknife
method Efron and Stein (1981), and the leave-
one-out method Shao and Er (2016). These are
well-established and probably some of the most
common among data scientists and practitioners
because of their ease of interpretation and efficacy.
However, these methods can be computationally
very intensive, especially for large models and
data sets. Moreover, the need to estimate the em-
pirical risk via a test set inevitably reduce the
amount of data available for training and cross-
validation and bootstrapping method may result
in unreliable results for extremely small data sets
Isaksson et al. (2008). A similar issue was recently
discussed by Gautheron et al. (2020). In contrast
to empirical test set-based methods, theoretical
generalization error bounds are mathematically
derived and do not require an empirical estimation
of the model performance on unseen data.

Scenario decision-making theory is a new and
powerful mathematical framework to formally ad-
dress the generalization problem concerning data-
driven decision-making tasks Campi et al. (2018).
Scenario theory finds its roots in Statistical learn-
ing theory and shares some similarities with other
works on Compression learning and Complexity-
based Vapnik–Chervonenkis. Scenario-based gen-
eralization error bounds are computed from a sta-
tistical measure of the complexity of decisions and
with no assumption on the data generating mecha-
nism. If the decision-making problem is convex, a
data-independent (a-priori) generalization bound
can be obtained independently from the elements
within the data set. The term a-priori means that
the bounds are obtained before calculating the
decision. For instance, the probability distribu-
tion error for the solution of convex problems
is upper bounded by a beta distribution whose
parameters just depend on the number of decision
variables and on the size of the data set Campi
and Garatti (2008). However, data-independent
bounds can be conservative in many cases. To
amend for this conservativism, data-dependent (a-
posteriori) generalization bounds, have been re-
cently derived and are specifically tuned to the
solution of a scenario decision-making problem
and the scenarios within the data set, Campi and
Garatti (2018). Scenario theory has been exten-
sively studied for convex decision-making prob-

lems. Care et al Carè et al. (2015) showed that L∞
convex minimization problems, the probability of
exceeding empirical risk levels follows a Dirich-
let distribution with Beta marginals. Recently, a
new abstract theory for scenario decision-making
was proposed and allows tackling a wider vari-
ety of convex problems, oft-constrained problems
Garatti and Campi (2019), and also non-convex
problems Campi et al. (2018). Rocchetta et al.
(2020) applied scenario-based bound to derive
bound support vector machine ensembles classi-
fiers for anomaly detection and to tackle non-
convex reliability-based design optimization prob-
lems, Rocchetta et al. (2020).

In this work, we investigate new generalization
error bounds for regularized ELM models. We
derive an upper and a lower bound on the prob-
ability of prediction errors being greater than a
predefined threshold level, i.e., a certificate on the
accuracy of the ELM model for future samples.
The certificate is derived without any assumptions
on the distribution family of the data and works
for any number of samples. This makes the bounds
particularly useful when a lack of data affects the
study or when the distribution of the samples is
highly uncertain. We test the new method on a
reliability assessment problem of a dynamic con-
troller affected by uncertainty. An ELM model
is sequentially trained to emulate the reliability
response of the controller and it is used to predict
future values of a reliable performance function
for the controller. The resulting ELM is used to
efficiently assess the failure probability of the
controller and the bounds on the accuracy give
guarantees on the correct classification of failure
and safe labels (up to the desired confidence). We
will conclude with a discussion on the applicabil-
ity of these bounds for reliability-based decision-
making and online learning for safety-critical sys-
tems context.

2. Preliminaries
Consider a vector of explanatory variable x ∈
X ⊆ R

nx and vector of target variables y ∈ Y ⊆
R

ny from an unknown process f : X → Y . We
call δ = (x, y) a scenario and its dimension is
nδ = nx + ny .
A data set

DN = {δi}Ni=1 ∈ ΩN ,

is available and it contains N independent and
identical distributed (iid) scenarios (x, y). We
are interest in the identification of a explana-

tory model y = f̂(x), obtained from DN , that
well-describes the unknown/uncertain process f :
X → Y . The mechanism generating the data
is known as a stationary Data-Generating Mech-
anism (DGM) and can be regarded as classical
probability space (Ω,F,P), comprising the event
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space Ω = X × Y , equipped with a σ-algebra F,
and a probability measure P.

3. Scenario decision-making theory
Consider a scenario decision-making problem de-
fined as follows:

M : ΩN → Θ, N = 0, 1, 2, ..., (1)

where M is a generic map from the event space
for a multi-sample extraction of size N to a deci-
sion space Θ. An optimal decision made accord-
ing to the rule M and the set DN is given by

d� = MN (DN ) ∈ Θ.

Without loss of generality, M can be an expert-
based or heuristic rule, an optimization algorithm
or any generic given-data method, like regres-
sion or classification methods. Note that an ELM
model is essentially a function fELM (x, d�) :
X → Y which optimal parameters d� can be
directly inferred from DN . Hence, ELM training
program, like many other ML methods, are a spe-
cial class of decision-making problem M. Sce-
nario decision-making theory seek generalization
error bounds for the solution d�, i.e., guarantees
on the solution’s ability to perform as expected
for future scenarios. Even with this high level
of generality, it is already possible to prescribe
error bounds for d�. In the next sections, we will
review important definitions and assumptions that
are needed to derive these grantees.

3.1. Feasibility, support element and
violation probability

Definition 3.1 (Feasibility set). Let us define a
feasibility set Θδ ⊆ Θ as the collection of de-
cisions d ∈ Θ that satisfy given requirements in
correspondence of a scenario δ.

An optimal decision d� is acceptable/feasible for
DN if it lay within the intersection of all the

feasibility sets, d� ∈ ⋂N
i=1 Θδi .

Definition 3.2 (Violation probability).
The error probability, also known as violation
probability (or risk), is given by:

V (d�) = P [δ ∈ Ω : d� �∈ Θδ] . (2)

this is the probability that, given a new random
δ ∈ Ω, the optimized d� will fail to comply with
the requirements in δ.

Given a reliability parameter ε ∈ [0, 1], a solution
for which V (d�) ≤ ε is known as 1 − ε reliable,
i.e., d performs as expected for at least 100× (1−
ε) percent of the scenarios.

Definition 3.3 (Set of support scenarios).
We further define a support scenario a δ in the
data set DN that, if removed, leads to different
decision. The set of support scenarios, or support
set, is a set S ⊆ DN such that M(DN ) �=
M(DN \ δs) if δs is removed from S .

Consider a problem M defined by the follow-
ing convex optimization program with random-
ized constraints:

min
d∈Θ

{||d|| : g(d, δi) ≤ 0, i = 1, ..., N} , (3)

where g(d, δi) is a convex function (a cost, a reli-
ability requirement or a negative loss) enforcing
N sample constraints on the problem. A feasi-
bility set induced by one of the constraints in
Eq.(3) is given by, Θδ = {d ∈ Θ : g(d, δi) ≤ 0} ,
and the violation probability is simply, V (d�) =
P [δ ∈ Ω : g(d, δi) > 0] .
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Fig. 1. An example of convex decision-making prob-
lem where the loss function g defines convex constraint
on a two dimensional decision space.

Figure 1 presents a graphical example of convex
scenario decision-making program. The scenar-
ios depicted on the left panel induce N convex
constraints, g ≤ 0, that are depicted in the two-
dimensional decision space in the panel on the
right. The optimal design presented by a green
marker is obtained by following the optimization
direction (given by the partial derivative of |d|)
and enforcing all the non-positive constraints. The
optimized d� lays within the union of feasibility
sets (the non-feasible regions are in grey color).
The violation probability is the probability that a
new sample (in red), will lead to a failure of failure
of the design d�.

The set S can be constructed by collecting the
scenarios that active the constraints at the opti-
muma, i.e., the samples for which g(d�, δ) = 0.
In scenario theory, the cardinality of the set of

aNote that this is a good practice for convex problem like
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support elements, s� = |S| is a statistical indicator
of the complexity of a decision and it will be used
to compute generalization bounds on V (d�). If s�

is computed a-posteriori, after observing d�, the
resulting bounds are data-dependent and random
quantity (because depend on the elements in D).
In contrast, data-independent (a-priori) bound can
be derived by bounding the complexity of the
optimization. As example, s� is always caped by
the dimension of decision variables for convex
problems.

We are now ready to present the basic assump-
tion needed on M to obtain generalization bounds
on d�.

3.2. Assumptions on M
We make the following assumptions on the pro-
prieties of M b:
(A1) The problem M is permutation-invariant,
i.e., M(δ1, ..., δN ) = M(δk1

, ..., δkN
) where

δk1, ..., δkn is a permutation of the N samples.
(A2) Consider two data sets Dn,Dm. For any non-
negative integers n,m, if a decision d� = M(Dn)
taken using the first data set belongs to the joint
feasibility set induced by the second data set with
the new m sample,

⋂m
i=1 Θδi , then d� = M(Dn∪

Dm) ∈ ⋂m+n
i=1 Θδi .

(A3) Instead, if d� �∈ ⋂m
i=1 Θδi then the solution

of the problem with the additional data set does
not coincide with the initial solution, that is,

M(Dn ∪ Dm) �= d�.

(A4) The problem M and its solution d� are
non-degenerate. Consider a subset of j samples
discarded from DN where j < N . If the j dis-
carded samples are not support element (are not
in S) then, P[M(DN ) = M(DN−j)] = 1. The
solution d� with all the samples in place coincides
with probability one to the solution of M where
only N − j samples are used.

3.3. Reliability bound for convex M
An expression for the bounds on R is formally
introduced in (Garatti and Campi, 2019, Theorem
4).

Theorem 3.1. Given a confidence parameter β ∈
[0, 1], and under assumptions A1-A4, the risk of
d� can be bounded as follows:

P
N [ε(s�) ≤ V (d�) ≤ ε(s�)] ≥ 1− β

(3) because support scenarios are always active at the opti-

mum. However, in a general non-convex setting non-active

constraints can be support elements.
bRefer to Garatti and Campi (2019) for a detailed discussion

on these assumptions

where ε(s�) and ε(s�) are a lower and an upper
bound on the risk computed as functions of the
complexity of the decision.

A formal expression [ε(s�), ε(s�)] can be ob-
tained solving the following polynomial equation
in the t variable (for any number of samples k =
0, 1, ..., n− 1),

Bn(t; k) =
β

2n

n−1∑
j=k

Bj(t; k)+
β

6n

4n∑
j=n+1

Bj(t; k)

where the factor Bj(t; k) =
(
j
k

)
tj−k is a binomial

expansion. The upper and lower bounds on V (z�n)
are given by ε(k) = max{0, 1 − t(k)}, and,
ε(k) = 1 − t(k), where t(k) ≤ t(k) are the
two unique solutions in [0,+∞[ of the polynomial
equation. For the special case k = N , the upper
bound is set to ε(k) = 1 and the lower bound is
obtained solving in t the following equation

1 =
β

6n

4n∑
j=n+1

Bj(t; k).

4. Extreme Learning Machines
Extreme Learning Machines are very efficient
feed-forward neural networks for which the input
weights and parameters of the hidden nodes do not
need to be tuned. ELMs are trained to accurately
predict future values of y from observations of
x. The output weights d�, defining the ELM, are
optimize directly from DN . In the next sections,
we present a classical training method to iden-
tify d� a regularized version of it. The interested
reader is reminded to Huang et al. (2014) for a
comprehensive overview of some of the trends and
challenges for ELMs.

4.1. Traditional ELM
AN ELM is given by a function,

fELM (x; d) = Hd =

nh∑
i=1

hi(x)di, (4)

where d = [d1, · · · , dnh
]T ∈ R

nh×ny is the ma-
trix of weights connecting nh nodes in the hidden
layer to ny nodes in the output layer. The output
matrix from the hidden layer is,

H =

⎡
⎣
h(x1)

...
h(xN )

⎤
⎦ =

⎡
⎣
h1(x1) · · · hnh

(x1)
...

. . .
...

h1(xN ) · · · hnh
(xN )

⎤
⎦ ,

(5)
and h : X → H is an activation function, that
is, a map from the physical input space X to a
feature space H. The ith column of H contains
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the N outputs of hidden node i. For simplicity
sake, this work we will focus only on radial basis
activation functions, although other options are
available Huang et al. (2014). Note that selecting
an appropriate h(x) is a problem-dependent tasks
and any nonlinear piece-wise continuous func-
tions grantees an universal approximation capabil-
ity for the ELM. Figure 2 presents a conceptual
scheme of ELM model fELM (x; d).

Input layer

Hidden layer
output matrix

Output layer

d1

dnh

d2

d3

Output weights 
of the hidden 

nodes (tunable)

activation and
non-tunable

random input weights

Linear combination of 
hidden neuron weights and 
hidden layer output matrix

Trained to miminize discrepanc
with respect to

Input layerI

Hiddden layer
outtput matrix

Output layeer

dd1

ddddddnh

dd2

dd33

Output weights Output weights
of the hidden 

nodes (tunable))))

activation and
non-tunable

random input weigghtsg

Linear combination oof 
hidden neuron weights  and 
hidden layer output maatrix

Trained to miminize discrepancT
with respect to

ccc

Fig. 2. Conceptual diagram of an extreme learning
machine model.

ELM training program seek an optimal matrix
of output weights d that minimizes a loss function,
for instance, by minimization a loss between pre-
diction and target in the least-square sense:

d� = argmin
d

||Ŷ (d)− Y ||2, (6)

where Y is the matrix of output targets,

Y =

⎡
⎢⎣
yT1
...
yTN

⎤
⎥⎦ =

⎡
⎣
y1,ny · · · y1,ny

...
. . .

...
yN,1 · · · yN,ny

⎤
⎦ , (7)

and Ŷ = fELM (x; d) = Hd is the output pre-
dicted by the ELM and || · || is the Euclidean norm
operator. The optimal solution to (7) can be ob-
tained analytically and very efficiently by pseudo-
inversion of the matrix of activation functions:

d� = H†Y, (8)

where H† is the Moor-Penrose generalized in-
verse of the hidden layer output matrix.

4.2. Regularized ELM
An alternative and popular method to optimize an
ELM is by regularized version of thee least square
method defined as follows:

min
d,ζ

1

2
||d||2 + C

2

N∑
i=1

||ζi||2

s.t. |h(xi)d− yi| ≤ ζi i = 1, ..., N

where C ∈ R
+ is a non-negative regularization

parameter defining the cost of constraint violation,
h(xi)d − yi is a scenario constraint quantifying
the discrepancy between the output fELM (xi; d)
of the ELM model and the true value yi. The
vector ζ ∈ R

N,+ comprises N non-negative slack
variables softening the sample constraints.
An equivalent formulation of (9) is given by the
following unconstrained minimization program:

min
d

1

2
||d||2 + C

2
||Hd− Y ||2, (9)

which is known in the literature as the ridge re-
gression (or regularized least squares) and admits
a closed form solution for nh < N Huang et al.
(2014):

d� =

(
HTH +

Inh

C

)−1

HTY

and for nh > N :

d� = HT

(
HHT +

IN
C

)−1

Y

where Inh
and IN are the identity matrices of

size nh and N , respectively. Note that the term
HTH is kernel matrix of an ELM and its elements
h(xi) ·h(xj) are the dot products of the activation
functions.

4.3. The proposed probabilistic error
guarantees

Regularized ELM training program are convex
optimization method because the optimization pa-
rameters enter linearly in the constraint (quadratic
in the objective function). Furthermore, we con-
sider assumptions A1- A4 hold true for regu-
larized ELM programs. Thus, theorem 3.1 can
be used to prescribed the following certificate of
generalization for the ELM predictions (with a
confidence level 1− β):

ε(s�γ , N, β) ≤ V (d�) ≤ ε(s�γ , N, β) (10)

The risk of error for the optimized ELM is given
by:

V (d�) = P[|h(x)d� − y| > γ],
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and γ is an error level, i.e., a metric of discrepancy
between the prediction and the true value of y, and
s�γ is the number of support elements correspond-
ing to the level γ. For the regularized ELM, the

number s�γ is given by s�γ =
N∑
i=1

1|h(xi)d�−yi|>γ ,

where 1|h(xi)d�−yi|>γ is an indicator function for
the condition |h(x)d� − y| > γ.

5. Numerical example on a reliability
problem

m1 m2

k

x1 x2

u

w1

w
2

system model

m1 m2

k

x1 x2

u

w1

w
2

system model

Fig. 3. The two-mass spring system and scatter of 103

samples of the six uncertain quantities labeled as failure
(red cross markers) and safe (blue markers).

We test the proposed method on a modified
version of the benchmark problem for robust con-
trol design, see Rocchetta et al. (2019). A data
set contains 1000 samples of six uncertain input
factors x = [m1,m2, k1, kn, λ, τ ] where m1 the
mass of the first body, m2 the mass of the second
body, k1 and kn the linear and non linear spring
constants, τ a time delay and λ an uncertainty
factor on the loop-gain.

Each input vector x has three reliability perfor-
mance scores [g1, g2, g3] associated to. The relia-
bility performance scores model three reliability
requirements (closed-loop stability, setting time
and control effort). A gi(x) ≥ 0 means that the
system fails to satisfy requirement i when the
sample x is observed and a system failure occurs
if at least one of the requirements is not satisfied.
The worst-case reliability performance w(x) =
max(g1(x), g2(x), g3(x)) offers a metric to quan-
tify the reliability of the system and if w(x) ≥ 0
the system fails at least one of the requirement.
The probability of failure is thus given by,

Pf = P[x ∈ Ω : w(x) ≥ 0].

Figure 3 presents the system structure and the
available data set. Samples leading to a system
failure are presented by red markers whilst the
safe scenarios are displayed in blue colour. Note

that computing g2(x) and g3(x) entails solving
a set of state-space equations governing the sys-
tem dynamics response in time. This is generally
done via numerical integration and can be time-
consuming. The goal of this work is to train an
ELM capable of predicting values of w from sam-
ples of x. The resulting model w = fELM (x; d�),
will replace the numerically expensive state-space
model of the two-mass spring system and it will
be used to assess the reliability of the system and
to assign a class to new scenarios. The optimized
ELM will be equipped with a certificate of robust-
ness that guarantees the surrogate model ability to
predict new w accurately.

5.1. Results
As preliminary analysis we compare ELM models
optimized by the Moor-Penrose pseudo inverse
method or by using regularized ridge regression
problem presented in Eq. (9). We use a subset of
500 samples from the data set, nh = 20 hidden
nodes and a parameter C = 103 weighting the
cost of violations in the regularized regression
problem. The top panel of Figure 4 displays the
values for the optimized nodes weifhts d� for the
MP case (black dotted line) and the regularized
case (red solid line). The bottom panel compares
the goodness of fit of the two models, the 500 test
values of w are displayed on the y-axes whilst the
predicted values are presented on the x-axis.
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Fig. 4. The optimized weights d� of a nh = 20
ELM trained with MP and regularization method. In the
bottom panel, a regression scatter plot of the test values
for w and the predictions.

5.1.1. Probabilistic error guarantees

In this second analysis we present a numerical
study the generalization of the proposed ELM
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for reliability predictions. The generalization er-
ror bounds are computed using theorem 3.1. The
following probabilistic certificate is obtained for
the ELM P

N [V (d�) ∈ [ε, ε]] ≥ 1 − β, where a
high confidence level 1 − β = 1 − 10−4 and the
risk of inaccurate estimation is given by

V (d�) = P[|fELM (x; d�)− w| > γ],

where γ measure the discrepancy between the pre-
diction ŵ and the round truth w. Figure 5 presents
the generalization bounds [ε, ε] for an increasing
value of γ. The results refer to a regularized ELM
trained with 20 hidden neurons and for a subset
of N = 500 training samples from the available
103. The remaining samples are used to estimate
the empirical probability of exceeding the discrep-
ancy level γ. The true violation probability (risk)
is presented by the red marked curve in the figure.
WE can see that the bounds prescribed by scenario
theory always hold and contain the estimate of the
true violation probability.

For a γ = 0, the number of support elements
is s�γ=0 = 500 and theorem 3.1 can be used to
derive a generalization interval [0.96,1] bound-
ing the risk of exceeding the given error margin.
Clearly, these bounds are not very useful in prac-
tice because, i.e., not surprisingly the probability
that the prediction discrepancy is non-null error
(γ ≥ 0) is quite high. In contrast, selecting a
non-zero discrepancy γ = 0.02 the number of
support elements result s�0.02 = 90 and the risk
results bounded by V (d�) ∈ [0.106, 0.272]. In
words, the probability that the lack of accuracy in
a prediction of w from a new sample x will be less
than 0.02 is at worst 72.8%.

R(d*)   [0.106,0.272]

Fig. 5. Generalization error bounds [ε, ε] for increas-
ing discrepancy level γ. The red marked line presents
the out-of-sample risk estimate.

5.1.2. Online reliability assessment

In this test example, we assume that only a very
limited number of samples of x are initially avail-
able to optimize the ELM model and when a new
observation is collected the model is re-trained
using Eq. (9). At each iteration, the model is
used to estimate the system failure probability.
We monitor the improvement in generalization
with scenario-based generalization bounds. Fig-
ure 6 presents the results of this analysis where
only 5 samples were initially available and 300
were collected at the end of the procedure. The
top panel presents an ELM-based estimator of
the failure probability (red dashed line), the true
failure probability (black constant line) and upper
and lower predictions. The upper and lower bound
on Pf were obtained, respectively, by evaluation
of the probabilities [P[w > −γ] and P[w > γ]]
where an accuracy level γ = 0.01 was selected. In
other words, we consider a strip with half-width
±0.01 around the limit state function w = 0 and
we assume that a prediction falling within this
strip can not be classified as failure or safe by the
ELM. The bottom panel presents the probability
bounds [ε, ε] for the level of accuracy γ = 0.01. If
only 5 samples are available to train the ELM, we
can not guarantee anything on the prescribed level
of accuracy γ = 0.01 because the generalization
interval results vacuous [ε, ε] = [0, 1]. Conversely,
when more data is collected the epistemic uncer-
tainty in the ELM probabilistic accuracy substan-
tially reduces, [ε, ε] shrinks to approx [0.4,0.7],
and the ELM-based estimate of the failure prob-
ability results quite accurate.
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Fig. 6. Safe, failure and undecided domain according
to the trained ELM and a predefined target γ = 0.1.

6. Conclusions
Scenario decision-making theory offers a formal
mathematical framework to assess the robustness
and generalization of data-driven decisions. In this
work, scenario theory has been used to derive a
probabilistic certificate of guarantees on the pre-
dictive accuracy of regularized extreme learning
machine models, i.e., bounds on the probability
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of exceeding a predefined error level. The only
assumption on the data is on the samples being
independent and identically distributed and this
makes the resulting certificate distribution-free
and non-asymptotic (for any number of samples).
This makes scenario-based generalization bounds
particularly useful when the databases are limited
in size and/or severe uncertainty affects the dis-
tribution of the data. The proposed method has
been tested on a data set obtained from the bench-
mark problem for robust control design. ELM
models have been trained to predict the reliability
of the system from a small data set of observa-
tions and sequentially re-trained when new data
are collected The results prove the validity of the
proposed ELM method, especially in a reliability
context where high confidence in the prediction is
needed.
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