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ABSTRACT: In the last decades power grid is facing challenging problems due to the uncertain power out-
put of renewable sources and environmental changes, which are drifting weather scenarios toward extremes.
Problems of uncertainty are generally tackled by classical probabilistic approaches but in presence of imprecise
data and scarce information they often require artificial assumptions hardly justifiable. Conversely, imprecise
probabilistic frameworks have been recently developed to better deal with lack of data, epistemic uncertainty
and contradictory sources of information, although are generally lacking in computational efficiency. This paper
proposes an efficient reliability assessment framework that allows to study highly reliable power grid with dis-
tributed renewable sources which power outputs are modelled using parametric probability boxes. An adapted
Importance Sampling algorithm is exploited to efficiently propagate the probability boxes and sample rare fail-
ure scenarios. The case study selected is a 6-nodes power network, modified to allocate renewable distributed
generators. The approach is validated against Monte Carlo method. Furthermore, the efficient computational
approach allows to conduce a sensitivity study over the imprecision sources, which would have been com-
putationally intractable using brute force approaches. This allowed to identify which among the sources of
imprecision affect the most the the failure probability estimate for the grid.

1 INTRODUCTION

Power grids are critical infrastructures designed with
the primary goal of providing reliable electric power
supply to the end-users and at the lower practicable
cost. Traditionally, high capacity power generators
were located far from the load points and are operated
accordingly to a set of constraints, e.g. safety-related
N-1 contingency constraint (Rocchetta, Li, & Zio
2015).

In the last decade the power grid original design
has deeply changed. Nowadays it is common to see
renewable and broadly distributed generators, which
are generally located close to the electric power
consumers. Those are often referred as Distributed
Generators (DGs) and Renewable Energy Sources
(RES). The DGs and RES are regarded as beneficial
for the power grid because they can improve the grid
voltage profile, mitigate power losses and cut green
house gasses emissions. Nevertheless, an excessively
high energy share from renewable sources can
increase risks and drop power grid reliability. Those
negative effects are mainly due to the uncertain
power output of RES which depends on stochastic

weather conditions. Consequently the power demand
variability increases and the available power capacity
became less certain.This can lead to unexpected
hazardous situations and drops in the overall power
supply reliability, which in turn can increase the
likelihood of large size and costly power outages.

Uncertainty can be generally classified in Aleatory
and Epistemic uncertainty. The aleatory uncertainty
refers to inherent randomness, stochastic behaviours
and variability. It is considered not to be reducible
even if further information is collected. On the other
hand, epistemic uncertainty can be reduced and is
used to explain lack of knowledge, imprecision and
poor data quality. This classification of uncertainty
sources is very convenient for the analysts, which can
use it to quantify in which extent uncertainty is not
reducible, due to aleatory uncertainty, and in which
extent it might be reduced (i.e. epistemic uncertainty)
if further data is collected.

Although classical uncertainty quantification
frameworks are well-established and widely used,
they might result in misleading conclusions if used
when imprecision and severe uncertainty is affecting



the analysis (Beer, Ferson, & Kreinovich 2013). In
facts, within an imprecise information scenario clas-
sical approaches may need strong initial assumptions
(e.g. predefined probability distribution given just
few samples) which are generally difficult to justify
and can affect the goodness of the results. Imprecise
probabilistic methods have been recently developed
to rationally deal with imprecision and allows to
perform the analysis with weaker assumptions and
differentiating between epistemic and aleatory uncer-
tainty.

Many works analysed the RES and DGs effect on
power networks by mean of classical probabilistic
approaches, e.g. Sansavini, Piccinelli, Golea, & Zio
(2014), Rocchetta, Li, & Zio (2015), Mena, Hen-
nebel, Li, Ruiz, & Zio (2014), Henneaux, Labeau,
Maun, & Haarla (2016). These works applied prob-
abilistic methods to characterize relevant sources of
uncertainty and quantify their effects on the power
grid costs, reliability and risks. Power grids are highly
reliable systems and assess their failure probabilities
can be time-consuming using classical methods
(e.g. Monte Carlo simulations). The issue surely
aggravates if imprecise probabilistic frameworks
are employed, e.g. due to burdening computations
(optimisations) to be performed in the probabilistic
space on top of the probabilistic analysis.

In this paper, a model for reliability assessment
of power grids allocating RES and DGs is presented
and a criteria to define power network failure is intro-
duced. The power output is modelled stochastically
and some of the DGs (i.e. electric vehicles, storage
systems) are assumed having an imprecisely known
affects on the probabilistic model of the load demand
(during charging times). Consequently, the parame-
ters of the load probabilistic model are assumed as
intervals and imprecise. An imprecise probabilistic
framework is employed to perform uncertainty quan-
tification and in order to reduce the computational
costs an efficient algorithm is adapted from the one
proposed by (Zhang 2012). The algorithm is used to
speed-up the reliability bounds calculations and for
the efficient propagation of parametric probability
box. To conclude, a sensitivity analysis has been con-
ducted over the sources of imprecision to identify the
most relevant for the network reliability performance.
Thanks to the developed framework, the sensitivity
results are efficiently obtained and without the need
of running a very high number of power flows.

In the paper, Section 2 proposes a concise review
of uncertainty quantification approaches. The mathe-
matical model used for power flow analysis, the prob-
abilistic model and the framework for reliability as-
sessment are presented in Section 3. A brief intro-
duction on Importance Sampling method is also pre-
sented. Section 4 describes the proposed approach for

efficient reliability bounds estimation. The framework
is tested on a power grid case study and results and
discussion are summarized in Section 5. Section 6
concludes the paper.

2 UNCERTAINTY MODELLING
BACKGROUND

When the analysis is affected by severe uncertainty
or data is inconsistent or scarce, classical uncertainty
quantification methods may require unwarranted as-
sumptions to start the analysis, e.g. predefined prob-
ability distributions given small number of samples
or subjectively assuming distribution families. Artifi-
cial model assumptions produce less robust solution
or can even lead to misleading conclusions. To tackle
this problem imprecise probabilistic frameworks and
imprecise probabilistic theory have been developed
to better deal with imprecision and lack of data us-
ing weaker or less assumption. Different methods and
theories are discussed in literature (Beer, Ferson, &
Kreinovich 2013) and some of the most intensively
applied concepts are Evidence theory, interval proba-
bilities, Possibility theory, level-two probabilistic ap-
proach, Fuzzy-based approaches and robust Bayesian
approaches.

2.1 Probability Boxes

Probability boxes (P-boxes) are defined as a pair
of CDFs bounding the probability between upper
and lower bounds. P-boxes are popular mathemati-
cal tools often used to model quantities affected by
both imprecision and aleatory uncertainty. Let first re-
call the definition of cumulative distribution functions
(CDFs), which is a non decreasing mapping from R
to [0,1] such that for a probability measure P and for
each p∈R, the following FP (p) = P((−∞, p]) holds.
P-boxes is a pair of CDFs [F ,F ] such that F stochas-
tically dominates F (Ferson, Kreinovich, Ginzburg,
Myers, & Sentz 2002). It can be viewed as a continu-
ous form of random sets as follows:

{P ∈ PR|∀p ∈ R, F (p) = P((−∞, p]) ≤ F (p)} (1)

where equation (1) define the credal set induced
by the p-box [F ,F ]. For further theoretical details
the reader is reminded to (Destercke, Dubois, &
Chojnacki 2008)

P-boxes have been used in numerous applications
to model variables affected by both Aleatory and
Epistemic uncertainty, see for instance the works of
(Feng, Patelli, Beer, & Coolen 2016). Distributional
P-boxes and distribution-free P-boxes are two dif-
ferent types of P-boxes (Patelli, Alvarez, Broggi, &
de Angelis 2014). For the first type, the underlying
distribution family is well-known (e.g. Normal or
Weibull) while its parameters are poorly known
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Figure 1: Example of distributional probability box. The family
of the underling distribution is normal and its standard deviation
and mean are intervals [σ,σ] and [µ,µ].

(i.e. just as confidence intervals). More generally,
distribution-free P-boxes are defined only through
bounds and the underlying probability distribution
family is not known. In Figure 1 is depicted a distri-
butional P-box, the probability distribution family is
the normal distribution and its parameters σ and µ
are provided as intervals.

2.2 Uncertainty Propagation

Classical uncertainty propagation is commonly per-
formed by means of Monte Carlo method or analo-
gous techniques. First, input samples are randomly
obtained by given probability distribution functions,
e.g. by using the inverse CDF sampling method.
Then, the samples are forwarded to the system solver
which computes the output. Procedure is repeated
and outputs probability distribution functions created.
Uncertainty propagation for imprecise probabilistic
frameworks (e.g. when P-boxes are used) can be done
for instance by nested Monte Carlo method or by
random sampling intervals directly from the P-box
bounds (i.e. focal elements propagation). The focal
elements propagation proceeds as follows. First, a so-
called alpha-cut α ∼ U(0,1) is sampled and intervals
obtained as in equations (2)-(3).

FX(α)−1 = {x|FX(x) = α} ∀α ∈ [0,1] (2)

FX(α)−1 = {x|FX(x) = α} ∀α ∈ [0,1] (3)

Once intervals are sampled, the output bounds are
obtained by solving minimization and maximisation
problems (Patelli, Alvarez, Broggi, & de Angelis
2014) constrained by the sampled input intervals.

Generally speaking, the P-boxes uncertainty prop-
agation procedure is time consuming and the output
P-box tails might result poorly estimated due to lack
of enough samples. This is a clear limitation in situa-
tions where the focus of the analysis is on the tails of

the output probability distribution, i.e. reliability esti-
mation. This problem is going to be tackled in the rest
of the paper.

3 POWER GRID MATHEMATICAL
MODELLING

A power grid can be represented by a graph G(N ,E),
let i denote nodes within the node set N and be (i, j)
the link between node i and j belonging to the line
set E . Let denote with Nl the number or loads, with
Ng the number of generators in G, with Pg the power
injected by the generator g, with Pi,j the active power
flowing in the line (i, j) and with θi,j the voltage
phase difference between nodes i and j.

In this work, a DC Optimal-Power-Flow (DC-OPF)
is used as the solver for the power network economic
dispatch problem. The economic dispatch problem
is a cost minimization problem which primary goal
is to determine the best power generators output
which minimises the network cost. The optimisation
problem is generally constrained by a set of physical
(e.g. Ohm’s law, power and current balances), oper-
ational (e.g. line thermal limit) and security-related
constraints (e.g. N-1 contingency criteria). The DC
power flow is regarded as a good approximation for
power transmission system and it has been used also
for distribution grid analysis (Mena, Hennebel, Li,
Ruiz, & Zio 2014). Security constraints are neglected
for simplicity. In this DC-OPF formulation, a load
can be curtailed if needed. This has indeed very
high cost for the grid and will occur only if the cost
minimization problem can not be solved otherwise,
e.g. if load demand exceeds the power capacity or to
avoid line overloads.

The mathematical formulation is the following
(Gan & Low 2014):

min
Pg ,Lcut

f(Pg,Lcut) (4)

where the cost function depends on the power gener-
ated and the load curtailed Lcut:

f(Pg,Lcut) =

Ng∑
g=1

Cg · Pg +

Nl∑
i=1

Ccut ·Lcut,i (5)

Subject to power generation constraints:

P g ≤ Pg ≤ P g ∀ g = 1, ..,Ng (6)

line flow constraints:

−P i,j ≤ Bi,jθi,j ≤ P i,j ∀ (i, j) ∈ E (7)

and nodal active power balance constraints:∑
g∈i

Pg +
∑
j 6=i

Bi,jθi,j +Lcut,i = Li ∀ i ∈ N (8)



where Cg and Ccut are the cost per-unit of power
for the generators and the load curtailed, respectively.
The terms P g and P g are the minimum and maximum
active power output of g and Li is the aggregated
load demanded at the node i. P i,j and Bi,j are the
line (i, j) flow limit and susceptance, respectively.
The voltage phase difference θi,j = θi − θj is the
difference between voltage phases at nodes i and j.

Renewable and other generators are considered as
a set of possible technologies associated with the gen-
erator set. For instance:

Pg = {Pmg, Pw, Ppv, Pst, Pev}

Cg = {Cmg,Cw,Cpv,Cst,Cev}
where the subscripts refer to different generators
technologies (g) such as main generators (mg),
wind turbines (wt), photovoltaic panels (pv), storage
systems (st) and electric vehicles (ev).

3.1 Classical Probabilistic Model: Weather and
Components

A classical (precise) probabilistic model for DGs and
RES technologies and for the weather conditions was
presented in reference (Mena, Hennebel, Li, Ruiz, &
Zio 2014) and reported here for completeness. The
power injected into the grid by one wind turbine de-
pends on the random wind speed and is determined as
follows:

Pw(v) =


P ra
w

v− vci
vr − vci

if vci ≤ v < vr

P ra
w if vr ≤ v < vco

0 otherwise

(9)

where vci is the cut-in wind speed, vr is the rated wind
speed, vco is the cut-out wind speed in [m/s] and P ra

w

is the rated power output for the turbine in per-unit
of power. The wind speed v at time t is considered
as a stochastic variable and it is assumed to follow a
Rayleigh distributed as follows:

fv(v) =
v

σ2
v

e
−v2

2σ2v (10)

where fitting parameter σv can be estimated using
historical data for the specific nodes or areas of the
network.

The power of from a PV cell depends on the sun
radiation s and on the PV cell parameters. The PV
model is:

I = s · (Isc + ki(Tc − 25)) (11)

V = Voc + kv · Tc (12)

Ppv(s) = ncells · FF · V · I (13)

where Ppv is the PV power output, ncells is its
number of cells, Isc short circuit current, ki current
temperature coefficient, Voc open circuit voltage, kv
voltage temperature coefficient. The expressions for
the fill factor FF and the cell temperature Tc can
be found in (Li & Zio 2012). The sun radiation s is
assumed Beta distributed and its parameters a and
b fitted on historical data and set equal to 0.26 and
0.73, respectively.

Storage systems and similarly electric vehicles can
inject or withdraw electric power from the network
nodes. Three EVs operating states have been consid-
ered, the vehicle to grid (V2G) the grid to vehicle
(G2V) and the disconnected operative states. The dis-
crete probability mass for EVs operative states f(t,op)
is as follows:

f(t,op) =


pV 2G(t) if op = V2G

pG2V (t) if op = G2V

pdcn(t) if op = disconnected

(14)

where pV 2G(t) is the V2G operative state proba-
bility at time t, pG2V (t) is the G2V operative state
probability at time t, pdcn(t) is the probability of EV
disconnected at time t and op is the EV operative
state. The power injected or demanded by EVs (Pev)
is equal to plus or minus the rated power P rated

EV if
the vehicle are in the discharging or charging states,
respectively. If the random operative state result
disconnected, Pev is set to 0.

The state-of-charge (SOCst) for a package of stor-
age devices is assumed uniformly distributed between
0 and the maximum capacity. The probability density
function is as follows:

fst(Est) =


1

ES ·Ms

if 0 ≤ Est ≤ ES ·Ms

0 otherwise

(15)

tr =
Est
P ra
st

(16)

Pst(tr) = P ra
st (17)

where SOCst is the storage state of charge, ES is the
specific energy of the active chemical, Ms is the total
mass of the active chemical in the battery, P ra

st is the
rated power in [MW] and tr is the discharging time
interval considered to be 1 h.

In the work proposed by (Mena, Hennebel, Li,
Ruiz, & Zio 2014), only discharge operative states



where considered, although is clear that storage
charging can influence the load profile. In this work,
this lack of information is shifted to the power de-
manded and the effects are incorporated into the prob-
abilistic model of the loads.

3.2 Power Load Imprecise Probabilistic Model

The load demanded in each load bus can be regarded
as an aggregation of random loads of lower magni-
tude. For instance, the load in a node i at a time t
is the sum of residential and industrial loads, which
in turn are the aggregation of smaller loads which
also have some random behaviour. It is generally
well-accepted hypothesis to consider aggregation of
power loads normally distributed.

The imprecision surrounding the behaviour of
power storages and electric vehicles is translated as
uncertainty in the load demand profile. Thus, the
loads for the nodes allocating ST devices are mod-
elled as distributional P-boxes (because affected by
both imprecision and aleatory uncertainty). The fam-
ily of the distribution is assumed Normal and its pa-
rameters are known only as intervals. The P-box as-
sociated to the load demand at node i is defined as the
following set of CDFs:

{FLi ∼ N (µi, σi), µi ≤ µi ≤ µi, σi ≤ σi ≤ σi}
Load demands in power grids are usually spatially and
time correlated but for sake of simplicity, the correla-
tion has been neglected in this analysis. Further model
extensions will account for correlation between P-
boxes using dedicated mathematical objects, e.g. cop-
ula structures.

3.3 Power Systems Reliability Index and Failure
Criteria

In general terms, the probability of failures for a sys-
tem can be defined as follows:

Pf =

∫
Ω

f(x)I(x)dx (18)

where Ω is the event space, f(x) is the joint probabil-
ity distribution of the input x and I(x) is the indicator
function. The indicator function has value 1 for each
x leading to system failure and equal to 0 if not.
In this work, the system fails if exceed predefined
threshold level for the power network reliability
index.

Generally speaking, many are the cases for which
the integral in equation (18) has not closed from solu-
tion. An approximated solution can be obtained using
Monte Carlo method:

P̂f,MC =

Ns∑
i=1

I(xi)

Ns

(19)

where Ns is the number of samples and xi is the ith
input sample vector. It is clear that the smaller the
Pf the higher will be the Ns needed for its robust
estimation. This is indeed a limitation of the Monte
Carlo method, which clearly emerges when system to
be evaluated is highly reliable or when the evaluation
of the system status, I(xi), is time-consuming (i.e.
heavy computational model).

Importance sampling (IS) is a popular variance re-
duction technique used for efficiently estimate small
failure probability. First, the importance distribution
g(x) is selected and the equations (18)-(19) rewritten
as follows:

Pf =

∫
Ω

g(x) · f(x)

g(x)
I(x)dx (20)

P̂f,IS =

Ns∑
i=1

w(xi)I(xi)

Ns

(21)

where w(xi) are called importance weights computed
as f(xi)

g(xi)
. The importance distribution can be chosen

arbitrarily and is generally selected in order to
increase the frequency of samples which fall in the
region of interest of the input space (i.e. the failure
region). This allows estimating the failure probability
as in equation (20) and reducing its variance. Select
an appropriate g(x) is the critical step in the proce-
dure. Practical recommendation is to select a g(x)
easy to sample from and as close as possible to the
original distribution f(x). Different works discusses
optimal selection for the importance distribution see
for instance (Hu, Chen, Parks, & Yao 2016).

Many power grid reliability indices have been
proposed, which are able to capture different fea-
tures of the network. Indices such as Loss-of-Load-
Probability (LOLP), System-Average-Interruption-
Frequency-Index (SAIFI) and Enery-not-Supplied
(ENS) are well-known and widely used. Here, ENS
is adopted to quantify the amount of energy not pro-
vided to the customers over a fixes time window. It is
computed as follows:

ENS =

Th∑
t=1

∑
i∈N

Lcut,i,t · Th (22)

where Th is the time window considered and Lcut,i,t
is the load curtailed at each time t for each node i
obtained as in equations (4)-(8).
In this work the indicator and failure region for the
network is defined as:

I(x) =

1 if ENS ≥ ENSthr

0 otherwise
(23)



where ENSthr is the selected threshold level of en-
ergy not supplied, equal to a small percentage of the
total load demanded by the network, i.e. 0.05 % of the
total load

∑
i∈N

Li. The network is considered in failure

if the energy not supplied exceed a predefined thresh-
old level, that is ENS ≥ ENSthr. This is in line with
a common practices in power grid reliability evalua-
tions, sometime referred as the ‘one-day-in-ten-years’
criteria. This rule classifies power grids as reliable and
unreliable when the average daily LOLP index is re-
spectively lower or higher than 0.000274 (i.e. 1 day in
10 years).

4 THE PROPOSED APPROACH

The method proposed for efficiently propagate
parametric P-boxes is adapted from the algorithm
introduced by Zhang (2012). The main difference
is in the last step, where an optimisation strategy
is employed. The optimisation is used to minimise
and maximise the failure probabilities and avoid of
over-conservatism problem of the original approach
(Zhang 2012). The optimisation algorithm search
among all the possible CDFs enclosed within the
input p-box and select the one which minimises and
maximises Pf .

The procedure is summarized as follows:

• Step 1: Using standard techniques, select the im-
portance distribution g(x) for the power loads,
set ENSthr and the number of samples Ns;

• Step 2: Sample Ns realizations from g(x)
and the random variables for RESs and DGs
{s, v,op,Est};

• Step 3: For each sample xi solve DC-OPF, com-
pute the ENS and obtain an indicator function
I(xi);

• Step 4: Solve a minimization and maximisation
problem constrained within the bounds of the
vector of imprecise parameters θ. The results are
bounds on the failure probability as follows:

Pf = min
θ≤θ≤θ

(
Ns∑
i=1

I(xi)f(xi,θ)
Nsg(xi)

)

Pf = max
θ≤θ≤θ

(
Ns∑
i=1

I(xi)f(xi,θ)
Nsg(xi)

)

where f(xi, θ) is the PDF value for the given θ
and I(xi)

g(xi)
is retained from step 3.

The algorithm is efficient because the system
solver has to run only Ns times for the IS method.
Thus, the indicator function is retained and used
within the minimization problem in Step 4 at very
low computational cost. Conversely, the brute force

double loop Monte Carlo approach would need a
considerably higher number of DC-OPF runs (i.e.the
number of inner loop samples multiplied by the
number of outer loop samples).

5 CASE STUDY

The case study selected for the analysis is a 6-bus
power network. The design data for the original
system can be found in the MatPower (Zimmerman,
Murillo-Sanchez, & Thomas 2011) study cases
library under the name case6ww. Figure 2 displays
the network topology, the nodes and load names and
lines parameters such as maximum flows, resistances
and reactances. DGs and RES generators have been
allocated close to the load nodes and other modifica-
tions implemented as follows.

ST devices have been equally allocated in nodes
4-5-6 for a capacity equal to 7% of the node design
load. One WT is allocated in node 4, EVs placed in
nodes 5-6 and PVs cells in node 6. The maximum
power output for the DGs is set equal to 70%, 3%
and 2.7% of the original design load for WT, PV and
EV respectively. The design load is incremented by a
multiplying factor of 1.7 to counterbalance allocation
of DGs. Due to DGs allocation, the mean of the load
demanded in nodes 4-5-6 is imprecisely known. The
load is assumed normally distributed and modelled as
a distributional P-box, the parameter µ is assumed
to lay within the interval [0.95µ,1.05µ] where µ is
the design load set to 119 MW (e.g. based on expert
judgement). The standard deviation σ assumed equal
to 11.9 MW (e.g. estimated from historical data).

5.1 Result and Discussion

First, a comparison study between Monte Carlo
method and Importance Sampling method is carried
out to test the goodness of the second approach. The
epistemic uncertainty on the load µ is neglected by
fixing its value to 119 MW for each node (i.e. design
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Figure 2: The 6-bus power grid topology. On top of each line are
displayed resistance and reactants and on the bottom, the maxi-
mum allowed flow in per unit.
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Figure 3: Comparison between two independent runs for Impor-
tance sampling (red solid line) and MC (blue dashed lines) meth-
ods. The plot shows convergence plot for the expected probabil-
ity of failure Pf against the number of samples Ns.

load increased of factor 1.7). The importance dis-
tribution g(x) is selected by increasing the standard
deviation of the loads from 11.9 to 13.1 MW which
allows sampling more scenarios with high load.

Figure 3 shows the convergence curves for P̂f using
two independent Monte Carlo and Importance Sam-
pling runs for different numbers of samples. It can be
observed that MC (blue dashed lines) is not efficient
in sampling failure scenarios, which affect the good-
ness of the Pf estimator. The P̂f values obtained by
MC method are 0 and 10−5 for the first and second
run, respectively. On the other hand, the IS method
(red solid lines) allows improving the estimation of
Pf reducing its variance. The resulting P̂f is about
0.25·10−5 and 0.35·10−5 for first and second run, re-
spectively. The overall computational time for MC or
IS is about 28.8 minutes on a machine installing an
Intel Core 2.00 GHz processor and 8.00 Gb RAM.

After the verification of the IS approach, it has
been applied also accounting imprecision to the load
mean value at each node. At each load node, the
interval [0.95µ,1.05µ] is considered, where µ is the
design mean load. The IS algorithm is applied and
failure probability bounds are P f=1.296·10−4 and
P f=3.6·10−8 (the first row of Table 1). It must be
observed that the overall computational time for the
reliability bound analysis is the sum of the time need
to perform the IS algorithm plus the time needed to
solve the optimisation problem. The time needed to
perform optimisation is fairly low because the DC-
OPF is not called within the optimisation procedure.
For instance, using a genetic algorithm optimizer 105

IS samples and 10 generation the overall time for
minimization and maximisation is about 72 seconds
on the cited machine.

The obtained Pf bounds are compared to brute
force double loop MC solution. The epistemic vari-
ables are sampled in the outer loop (i.e. the load µ)
while a classical MC is nested to the previous (i.e.
inner loop). The samples obtained in the outer loop
were just 10 due to time constraints, and the bounds
computation took about 4.5 hours on the standard ma-
chine. The very rough estimations for the bounds are

Estimated

Figure 4: The result of double loop MC approach, the P-box of
the ENS. The figure is zoomed on the right tails to improve vi-
sual outputs. The ENSthr is displayed with dashed red line and
the reliability bounds estimators computed as displayed.

Table 1: The result of sensitivity analysis obtained reducing the
imprecision associated with the mean value of the load demand
one-at-a-time.

P f · 10−8 P f · 10−4

Imprecision L4 L5 L6 L4 L5 L6

[0.95µ,1.05µ] 3.6 3.6 3.6 1.296 1.296 1.296
[0.96µ,1.04µ] 9.6 3.6 3.7 0.675 1.299 1.292
[0.97µ,1.03µ] 24.4 3.6 3.7 0.340 1.304 1.287
[0.98µ,1.02µ] 60.3 3.6 3.8 0.165 1.309 1.282
[0.99µ,1.01µ] 143.3 3.6 3.8 0.077 1.315 1.276
[µ,µ] 328.6 3.6 3.8 0.035 1.321 1.271

P f=1.2·10−4 and P f=0, similarly to the IS results.
The ENS P-box has been plotted in Figure 4 and
zoomed on the tail for better graphical resolution. It
can be noticed that tails are coarsely estimated due to
the low number of samples and the high system relia-
bility.

5.1.1 Sensitivity Analysis
The figure 5 depicts sensitivities of P f (top plot)
and P f (bottom plot) due to progressive reduction in
the mean load imprecision. The sensitivity has been
performed by shrinking the bounds on the loads µ
one-at-a-time. The reliability bounds changes due
to reduction in the imprecision on L4,L5 and L6

is displayed in Table 1. It can be observed that P f

reduces (top plot) and P f increases (bottom plot)
when L4 progressively became more precise (red
dashed line). On the other hand, the considered level
of imprecision on the mean value of L5 and L6 affects
slightly the reliability bounds results.

It is clear that L4 reduces the most the reliability
bounds if compared to L5 and L6. In fact, if the inter-
val (i.e. imprecision) associated to µ4 shrinks from the
wider [0.95µ4,1.05µ4] to a crisp value [µ4, µ4], then
the estimated P f goes from about 3.5 ·10−9 to about
4.5 ·10−7 and P f from about 3·10−5 to 3 ·10−7 (see
Table 1). This is the most relevant sources of impreci-
sion and better specify its probabilistic model would
provide the higher benefit (i.e. system reliability per-
formance more precise). This high sensitivity to L4



Figure 5: Sensitivity on the network upper failure probability bound (top figure) and the lower bound (bottom figure) due to the
shrinking of imprecision interval on the mean load 4, load 5 and load 6 taken one-at-a-time.

is probably due to the maximum allowed to flows of
links connected to node 4. In fact, the lines (1,4),
(2,4) and (4,5) have maximum capacity of 60, 60
and just 20 MW of power, respectively. In particular,
line (4,5) acts as bottleneck for the network, which
has to curtail part of L4 load in order to satisfy opera-
tional constraints on P i,j , see constraints in equations
7. Conversely, reducing the imprecision on the mean
loads at nodes 5 (red dotted line) and 6 (black solid
line) does not significantly alter the epistemic uncer-
tainty (i.e. interval) of the failure probability. In Table
1 are summarised the results of the sensitivity analy-
sis.

6 CONCLUSIONS

A framework for efficient reliability assessment of
power grids subjects to parametric P-box uncertainty
is presented. The framework has been used to assess
the energy not supplied by a DGs network and to as-
sess the imprecision on its probability of failure. The
adopted computational strategy makes use of an im-
portance sampling algorithm embedded within an im-
precise probabilistic framework for advanced uncer-
tainty quantification. This allows to speed up the com-
putations and to propagate distributional P-boxes by
retailing DC-OPF simulations. This makes the frame-
work fast and flexible enough to perform sensitivity
analysis on the system failure probability. Sensitivity
analysis allowed to point out the most relevant sources
of imprecision with a relatively low computational de-
mand.
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