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ABSTRACT: Cascading failures events are major concerns for future power grids and are generally not 
treatable analytically. For realistic analysis of the cascading sequence, dedicated models for the numerical 
simulation are often required. These are generally computationally costly and involve many parameters 
and variables. Due to uncertainty associated with the cascading failures and limited or unavailable his-
torical data on large size cascading events, several factors turn out to be poorly estimated or subjectively 
defined. In order to improve confidence in the model, sensitivity analysis is applied to reveal which among 
the uncertain factors have the highest influence on a realistic DC overload cascading model. The 95th per-
centile of the demand not served, the estimated mean number of line failures and the frequency of line fail-
ure are the considered outputs. Those are obtained by evaluating random contingency and load scenarios 
for the network. The approach allows to reduce the dimensionality of the model input space and to iden-
tifying inputs interactions which are affecting the most statistical indicators of the demand not supplied.

tion should use available historical cascading data, 
which is (in particular for large size cascade events) 
quite limited (Rocchetta et al. 2018) or affected by 
imprecision (Rocchetta et al. 2018). Consequently, 
the resulting model verification and calibration 
is very challenging and affected by high level of 
uncertainty. Uncertainty will result particularly 
prominent when the model is used to simulate rare 
events leading to very severe consequences.

To increase confidence in the cascading model 
results and better understand the relation between 
its inputs and outputs, all the relevant sources of 
uncertainty affecting the analysis should be quan-
tified. Dimensionality and complexity issues are 
often involved in cascades analysis problems and 
the numerical simulators generally reflect these 
problems. In fact, the simulators often are time 
costly and involve a large number of uncertain 
variable and parameters.

Sensitivity analysis methods are useful to deal 
with both dimensionality and uncertainty issues. 
These methods can be used to reveal which sources 
of uncertainty are affecting the most the model 
output and can be used to reduce the dimension-
ality of the aleatory space by prioritizing only 
the most important factors. This is indeed a use-
ful information, necessary to better comprehend 
inputs-outputs relations otherwise hidden within 
the complexity of the model.

Global sensitivity analysis methods are often 
employed by uncertainty analysts to sharpen the 

1 INTRODUCTION

Assure high-reliability of electric power supply is 
a major concern for next-generation power grid. 
Power grid should have the ability to withstand 
know threats, such as N-1 and N-2 contingencies, 
but also poorly understood low-probability-high-
consequence events such as N-k contingencies 
leading to cascading sequences. Due to the inherent 
complexity of cascading failure events, associated 
mathematical models are, generally, analytically 
not solvable. This is mainly due to the high dimen-
sionality of the problem and to the complex, 
non-linear and dynamic behaviour characterizing 
domino failures.

Computational models for the simulation of the 
cascading sequences are used to provide a solution 
to the cascade problem. A wide variety of models 
have been proposed in the past, aiming at analysing 
different system behaviours and with several differ-
ent objectives. For instance, models employing the 
AC power flow (PF) equations, such as the Man-
chester model (Nedic et al. 2006) or the linearized 
AC PF model (Li et al. 2016), the ORNL-PSerc-
Alaska (OPA) model (Dobson, Carreras, Lynch, 
& Newman 2001) and DC PF-based models have 
been developed to simulate realistically cascading 
failures sequences.

Numerical models for cascading simulation 
have to be adequately designed, calibrated and val-
idated (Bialek et al. 2016). Calibration and valida-
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view of the problem. Sensitivity analysis is some-
times regarded as a fundamental part of works that 
involves the assessment and propagation of uncer-
tainty (Borgonovo and Plischke 2016). Applying 
global sensitivity analysis methods, insights can 
be gained regarding the input-output mapping 
and the key drivers of uncertainty can be clearly 
revealed (Borgonovo and Plischke 2016).

In this paper, an integrated framework for sen-
sitivity analysis and power grids cascading analysis 
is proposed. The framework can be used to identify 
and prioritize the most relevant uncertain input 
factors by revealing their effect on different cas-
cading failures indicators. Both system-level indi-
cators, describing the overall impact of cascading 
failures, and component-level indicator, focusing 
on a single component performance, are consid-
ered. One of the aims of this work is to provide 
some guidance for the application of given data 
sensitivity analysis and screening methods to engi-
neering practitioners, promoting their potential.

The framework is tested on a modified version 
of the RTS96 IEEE system. Two uncertainty cases 
are analysed, first accounting for only the uncer-
tainty in the load demand. Then, a more complex 
and realistic case has been considered by account-
ing for randomness in the generators costs, thus 
inflating the dimensionality of the input space, 
i.e. more flexibility for the generators outputs. The 
analysis allows to point out which among loads 
and generator costs uncertainties is affecting the 
most the outputs of cascading failures model and 
for a modest computational effort.

The rest of the paper is organized as follows: 
Section  2 introduces global sensitivity analysis 
and screening methods. In Section 3 the algorithm 
for cascading failure simulation and the perform-
ance indicators are introduced. A benchmark case 
study, the RTS96 system, tests the framework in 
Section  4, 2 uncertainty cases are analysed. Sec-
tion  5 closes the paper with a discussion on the 
results and conclusions.

2 SENSITIVITY ANALYSIS  
AND SCREENING

This section proposes a concise introduction to 
uncertainty quantification and methods for global 
sensitivity analysis. Traditionally, uncertainty quan-
tification and analysis consist in the assignment of 
probability distributions to the model input factors 
(variables and parameters). Once the uncertainty 
has been characterized, it is propagated into the 
simulation code via Monte Carlo method. First, 
uncertain factors are characterised by assigning 
probability distributions. This is an important step 
which has to be performed adequately to assure 
high quality and consistency of results (Patelli, 

Pradlwarter, & Schuller 2010). Then, samples are 
obtained from the joint probability distribution 
of the input factors, e.g. by Latin hypercube sam-
pling, quasi-random sequences or crude Monte 
Carlo inverse transform sampling (Patelli, Broggi, 
Angelis, & Beer 2014). Once the ith input realisation 
is obtained X i i iX X m= ( ) ( ) 0 ,.., ,  the sample is 
forwarded to the computational model M(X). This 
allows obtaining information about the input-out-
put mapping defined by the computational model 
as follows: 

M Y M: ,X Y→ → = ( )X X  (1)

where Y is the model output, for simplicity assumed 
1-dimensional and without loss of generality.

Global sensitivity analysis methods have been 
developed to identify the most and the least rel-
evant factors and gain additional insight on the 
input-output mapping defined in equation 1. 
Several global methods have been developed in 
the last decades. Screening methods, such as the 
one-at-a-time design of Morris (Morris 1991), 
variance-based methods, density-based methods 
(Borgonovo & Plischke 2016) are some of the most 
intensively applied methods.

2.1 Given data Sobol’s indices

A variance-based statistic, commonly referred as 
the first order sensitivity coefficient, quantifies the 
(additive) effect of each input factor on the model 
output as follows (M. Sobol 1990):

S
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where V[Y] is the total variance of the output Y, Xi 
is the ith uncertain input factor, X∼i  is the matrix 
of all uncertain factors but X Y Xi ii

, [ | ]EX∼
,  is 

the expectation of the model output Y taken over 
all possible values of X∼i  while removing the Xi 
uncertainty (i.e. keeping Xi fixed) and VXi

[]  is the 
variance taken over all possible values of Xi. The 
indices Si can be used to reveal the importance of 
the input factor Xi on the variance of the output 
and it is a normalized index, that is ∑ =iSi 1

The main effect index reveals what is the impor-
tance of each uncertain factor on the uncertainty 
in the model output. It relatively cheap to obtain 
as it can be efficiently computed using given data 
methods or from a single Monte Carlo run (Plis-
chke et al. 2013). The main drawback of the index 
is that interactions between input factors are not 
accounted for with this sensitivity measure. Higher 
order Sobol’s effects (second and higher order 
interactions) compose the so-called total effect 
index STi. This is a variance-based measure of the 
influence of an input i accounting for all the inter-
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actions with other uncertain factors. It is defined 
as follows: 

S
V Y
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where STi account for all the contribution to the 
total variance of the output V[Y] when the first 
order effect of X∼i  is removed.

2.2 Elementary effects and Morris diagram

The Elementary Effects (EEs) is a screening method 
used identify the effect of input factors X(i) with 
i = 1,2,…,m on the output Y of  a mathematical or 
computational model M X( ) . The method con-
sists in the calculation of m incremental ratios, also 
called Elementary Effects, which are used to assess 
the influence of the input variables and parame-
ters. The ith elementary effect of the m-dimensional 
input vector X0  is defined as follows:

δ i

Y X X i X m Y
X

X
0

0 0 0 01( ) =
( ) ( ) + ( )( ) − ( ),., ,.,∆

∆
 

 (4)

where the quantity ∆ is a given variation in the 
input factor whose effect has to be evaluated. 
Intuitively speaking, the input factors leading to 
the higher incremental ratios δ i X0( )  have to be 
considered as the most relevant for the output 
quantity Y. Of curse, this relevance metric is valid 
only locally, in X0, where Y has been evaluated. 
Repeated One-At-a-Time (OAT) evaluations of 
random vector configurations provide the elemen-
tary effect method with global sensitivity analysis 
features (Turati et al. 2017). The mean and stand-
ard deviation of the EEs, resulting from random 
input vector configurations, can be plotted in the 
well-known µ δ σ δ( ) − ( )  plot proposed by Mor-
ris (Morris 1991). If  a factor Xi results in a small 
absolute value of the mean and small variance, it 
should be considered less relevant for the model. 
On the other hand, a factor Xi resulting in a high 
µ δ i( )  has to be considered highly relevant for the 

model, i.e. it leads to the average higher variation 
in the output. Similarly, a factor Xi resulting in a 
high σ δ i( )  is also of interest for the model output. 
In fact, high σ δ i( )  probably indicate a non-linear 
relation between the factor i and the output and/or 
a relevant interaction with other factors. An exam-
ple of Morris plot is presented in Figure 1 where 
the standard error of the mean (SEM) is used to 
decompose the plot in different areas.

The method has some points of strength, worth 
highlighting: 1) It is relatively easy to implement; 2) 
Computationally cheap compared to other global 

sensitivity methods also for high number of fac-
tors; 3) It uses a sensitivity measure which is simple 
to communicate (similarity between incremental 
rations and partial derivatives) to non-experts; 
4) Compared to variance/based measures, shows 
if  the input factors are (in average) positively or 
negatively correlated to the output.

3 THE CASCADING MODEL

A model for the simulation of steady-state opera-
tions of electric networks has been developed and 
calibrated in (Bing Li and Sansavini 2017). It can 
be used to simulate the initial contingencies that 
trigger the cascading events and estimate the 
post-contingency system states. The initial genera-
tion dispatch for each load demand is computed 
with a Security Constrained Optimal Power Flow 
(SCOPF), which takes into account the generators 
constraints, line flow constraints, voltage angles 
constraints and, optionally, the N-1 security con-
straints. After line tripping, DC power flow is used 
to evaluate the post-contingency power flow. The 
failures propagate in the grid through line over 
loading. Frequency control and protections, volt-
age protections and a variety of other automatic 
and realistic regulations and remedial actions are 
also included in the model.

A simplified flow chart of the cascading failures 
analysis is presented in Figure 2 adapted from (Bing 
Li and Sansavini 2017). The algorithm starts by 
loading power grid data, selecting the steady-state 
solver (e.g. DC-SCOPF) and a list of N-k contin-
gencies. Then, for each contingency N-k, islands 
are identified, frequency deviation assessed and 
under frequency load shedding performed if  nec-
essary. Once power balance is restored, line flows 
are evaluated using the power flow solver and the 
lines exceeding their flow limit are removed from 
the grid topology. This process is repeated until 
grid stability is reached. The considered outputs 
are the total Demand-Not-Served (DNS) due to 
contingency N-k and lines failure indicator func-
tions indicating if  a line tripped during the simula-
tion of the N-k contingency.

For simplicity, the contingency list has been 
obtained by random sampling N-1, N-2 and N-k 
line contingencies. To better identify and select 

Figure 1. An example of Morris diagram and how to 
discern between important and non important factors.
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critical failure scenarios, methods such as the N-2 
contingency screening, eg. the method presented 
in (Kaplunovich and Turitsyn 2016), could have 
been employed. However, a smart exploration of 
the contingency space was not the main aim of 
this work. Once the list is obtained, repeated N-k 
contingency analysis are performed as presented in 
Algorithm (Bing Li and Sansavini 2017).

3.1 System and components performance 
indicators

Several output measures can be obtained from the 
cascades model. In this work, we focus on 2 system-
level indicators, which provide insights on the grid 
performance as a whole, and on Nl components per-
formance indicators, one for each line in the system.

The indicators are the 95th percentile of the DNS 
cumulative distribution function p DNS95 ( ),  the 
average total number of lines tripped µ N f( )  and 
the line outage frequency Pf,l, defined as follows:

µ N
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where Nc is the total number of contingencies 
listed, Nl is the total number of lines in the system 
and Il,c is the indicator function for line l and con-
tingency c. The indicator function will result 0 if  
the line survived the cascading propagation initiate 
by contingency c or 1 if  the line failed, e.g. due to 
flows redistribution leading to an overload.

4 A CASE STUDY

The IEEE RTS96 power grid is used to test the 
methods and the cascading model and Figure 3 dis-
plays the grid layout. The power grid data can be 
found in (Grigg et al. 1999) and are not reported 
here for sake of synthesis. In this analysis, two rep-
resentative uncertainty cases, named Case A and B, 
are considered. In Case A, the uncertainty associ-
ated with the load demand is explicitly modelled. In 
the second case, CASE B, also random generation 
costs are accounted for, thus introducing uncer-
tainty in the power dispatch and increasing the 
dimensionality of the random input space. The DC 
cascading model presented in section 3, is employed 
for the solution of the cascading problem. A prede-
fined contingency list is selected and includes 2444 
line contingencies. The list counts the full set of 
N-1 and N-2 line failures and a set of 1000 random 
N-3 line failures. To simplify comparison between 
uncertainty cases and the different sensitivity analy-
sis methods, the contingency list has been kept the 
same throughout all the analysis (i.e. the random set 
of N-3 contingencies has been sampled just once).

4.1 CASE A: Random loads

The first uncertainty case A assumes that uncer-
tainty affects the 17 loads in the system due to 
inherent variability. The analysts lack better infor-
mation regarding the variability affecting the load 
at each node, thus, the uncertainty in Li is simply 
modelled by assuming uniform distributions. The 

Figure 2. The flow chart of the algorithm for cascading 
failures analysis.

Figure  3. The IEEE RTS96 system, the connections 
between the 24 nodes, the lumped generators (32 genera-
tors) and the location of the aggregated loads (17 arrows).
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distribution parameters have been selected to cover 
a range of values around the design loads and 
based on experts opinion:

L U L L i Ni d i d i l∼ ( ) =0 5 1 2 1. , . ,..,, ,

where Ld i,  is the design load of node i as presented 
in (Grigg, Wong, Albrecht, Allan, Bhavaraju, 
Billinton, Chen, Fong, Haddad, Kuruganty, Li, 
Mukerji, Pat ton, Rau, Reppen, Schneider, Shahi-
dehpour, & Singh (1999) and the number of lines 
is Nl = 17.

Once the uncertainty sources are characterized, 
a preliminary uncertainty analysis is performed. 
Monte Carlo method is used to propagate 5e4 sam-
ples of the load profile. For each load sample, the 
cascading failure model is solved 2444 times, one 
for each contingency listed. The percentile of the 
demand not served, the average number of failed 
lines and the line outage frequencies are com-
puted for each load sample as described in Sec-
tion 3.1. The p95 (DNS) results are summarised in 
Figure  4. This figure presents a so-called cobweb 
plot, also known as parallel coordinates plot. It is 
a simple and effective way of visualising random 
input and output spaces in high dimensions. The 
X-axis reports the inputs loads and the percentile 
of the DNS (on the far right). The Y-axis reports 
the normalized inputs and output realisations of 
the Monte Carlo method. Each one of the dark 
dashed line in the background corresponds to one 
load profile realisation and corresponding The p95 
(DNS) obtained through Nc model evaluations. Red 
solid lines are conditional samples, which highlight 
only the load combinations leading to the highest 
p95 (DNS). It can be observed, later confirmed by 
Morris’ and Sobols’ analysis, that there is a strong 
influence of some of the loads (e.g. in nodes 15 and 
18) on the extremes of the DNS. In particular, when 
the power demanded in nodes 15 and 18 is small, 
the risk of facing severe DNS scenarios increases.

Morris and Sobol’s indices have been com-
puted aiming at better investigating which among 
the uncertain factors are key drivers for the out-
put uncertainty. The Morris indices are obtained 
by selecting 250 random input vector realisations 

(saved from the MC) and computing incremental 
ratios δ as described in section  2.2. The Sobol’s 
first order coefficents are obtained using given 
data sensitivity approaches, see ref. (Plischke, Bor-
gonovo, & Smith 2013) for further details. This 
is a very convenient approach as for calculations, 
as the data from the MC run can be used for this 
and with essentially no-extra computational cost. 
On the other hand, total Sobol’s indices require 
higher computational cost and in this work the Liu 
and Owen method (R. Liu 2006) is used for their 
computation.

The result relative to the DNS percentile and the 
average total number of line failed are presented 
and compared in Table  1. The Morris statistics 
and Sobol’s main and total effect indices are also 
graphically presented in the µ - σ plot in Figure 4 
and in Figure 5, respectively. Both methods iden-
tify L18 and L15 as the most influencing factors for 
the DNS and average number of line failures. Less 
relevant but, not to be neglected, is the effect of 
loads in nodes 8, 19 and 16. Morris analysis has the 
advantage of revealing an inverse relation between 
L18, L15, L19 and the outputs (see figure 4) which 
could not be revealed only using Sobol’s indices. 
On the other hand, an increment in load 8 lead to 
higher risk of extreme DNS.

This result can be explained looking at the gen-
erators production profile, which is obtained solv-
ing the pre-contingency DC-SCOPF with objective 

Figure  4. The parallel plot of the Monte Carlo loads 
and p95(DNS) realizations. In red solid line the condi-
tional samples which lead to the highest p95 and in the 
background (black dashed lines) all the MC realisations.

Table 1. Sobol’s main and total effect mean and stand-
ard deviation for the elementary effects for the uncer-
tainty case A for the DNS percentile and average total 
failed lines outputs.

p95 (DNS) µ(Nf)

Sobol Morris Sobol Morris

Si STi µ(δi) σ(δi) Si STi µ(δi) σ(δi)

L1 0.01 0.00  0.01 0.03 0.01 0.00 -0.1 0.4
L2 0.01 0.00  0.01 0.03 0.00 0.00 -0.1 0.4
L3 0.02 0.02  0.02 0.08 0.02 0.01 -0.5 0.7
L4 0.01 0.00  0.01 0.03 0.01 0.00 -0.1 0.3
L5 0.01 0.00  0.02 0.03 0.01 0.00  0.0 0.3
L6 0.01 0.02  0.03 0.05 0.01 0.00  0.0 0.4
L7 0.01 0.03 -0.01 0.06 0.01 0.01  0.0 0.7
L8 0.04 0.03  0.06 0.08 0.03 0.05  0.4 0.7
L9 0.01 0.02  0.02 0.05 0.01 0.01 -0.2 0.7
L10 0.02 0.03  0.04 0.06 0.01 0.01  0.0 0.5
L13 0.01 0.04 -0.01 0.09 0.01 0.03 -0.4 0.9
L14 0.02 0.02  0.02 0.09 0.01 0.01  0.0 0.7
L15 0.29 0.40 -0.18 0.20 0.33 0.33 -2.1 1.7
L16 0.04 0.06 -0.05 0.09 0.03 0.02 -0.5 0.6
L18 0.39 0.44 -0.20 0.20 0.47 0.54 -2.7 1.9
L19 0.06 0.12 -0.08 0.13 0.03 0.05 -0.6 0.8
L20 0.03 0.06 -0.04 0.08 0.02 0.02 -0.5 0.7
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of minimizing generation costs. The generators in 
nodes 18, 22 are associated with lower generation 
costs. This lead to the maximum exploitation of 
their production capacity, independently from the 
load profile realisation. Consequently, when electri-
cal power is consumed in loco (e.g. the loads close 
to these generators as in 15 and 18), less power 
will be flowing from the ’northern’ area to the 
’southern’ area of the network. On the other hand, 
if  less power is demanded in, for instance, nodes 
18 and 15 (or more power in 8), this increases the 
risk of higher loads on line such as 24, 25 and 26 
which connecting the upper part of the grid with 
the lower part, and with it the risk of facing more 
severe post-contingency scenarios.

4.2 CASE B: Random loads and generator costs

The second uncertainty case B extends case A by 
accounting for generators costs uncertainties. The 
generation cost variability is characterised by uni-
form probability distributions as follows:

C U i Ng i g, . , . ,..,∼ ( ) =0 9 1 1 1

where Cg,i is the cost of the generating unit i and 
the number of generators Ng is equal to 32. By 
assuming costs Cg,i distributed uniformly between 
0.9 and 1.1, the economic viability of the genera-
tors drastically changes if  compared to case A. 
This lead to a higher variability in the economic 
dispatch, i.e. generators in nodes from 18 to 22 will 
sometime produce less than their maximum capac-
ity. This case study shows the applicability of the 
method to larger input spaces and larger power 
grids. Furthermore it shows the impact of differ-
ent generation profiles, in combination with load 
demands, on the cascading failures.

Similarly to the uncertainty case A, a Monte 
Carlo uncertainty propagation is performed and 
the Sobol’s Si indices and Morris µ(δ) and σ(δ) have 
been calculated. The 5 most influencing factors 

Figure 5. The Morris diagram for uncertainty case A and for the DNS percentile output. The mean and standard 
deviation of the EEs are reported on the X and Y axis, respectively.

Figure 6. The Sobol s main and total effects obtained 
for the uncertainty case A and for the DNS percentile 
output.

Table 2. Comparison between the top 5 most influenc-
ing factors according to the Sobol’s main index and Mor-
ris mean and standard deviation. The output considered 
is the DNS percentile.

rank Si |µ(δ)| σ(δ)

1 L8 L8 G18(1)
2 L3 G18(1) G13(2)
3 G18(1) L3 L8

4 G21(1) L6 G7 (1)
5 L18 L18 L7

(among the 17 loads and 32 generator costs) affect-
ing the 95th percentile of the DNS are reported in 
Table 2. Multiple generators can be found in the 
same bus and to simplify the notation, the relevant 
costs are presented using the symbol Gk(j), where j 
is the machine reference number within the bus k 
where the generator is installed. Differently from 
case A, load in node 8 emerged as the most rel-
evant factor for the DNS percentile.

Uncertainty in the loads and generator costs 
has been propagated to the line outage frequency 
indicator Pf,l. The resulting MC realisations are 
displayed using a box plot in Figure 6. The X-axes 
shows the lines identification number and the 
Y-axes presents the Pf,l values (red markers). Each 
box indicates the median (the central mark) and 
the bottom and top edges of the box indicate the 
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25th and 75th percentiles, respectively. It can be 
observed that the line connecting node 7 to node 8 
results in the higher failure frequency and that lines 
in the lower voltage area of the grid (ID from 1 to 
13) are more prone to failure. This result is proba-
bly due to the lower thermal limit (175 MW) and to 
the specific combination of grid topology, design 
load demanded in node 7 and 8 (125 and 171 MW, 
respectively) and generators in node 7 maximum 
lumped capacity (300 MW). Thanks to the sensitiv-
ity analysis, it has been possible to clarify which are 
the factors responsible for this peculiar behaviour, 
i.e. better understanding which are the variables 
which are contributing the most to Pf,7–8.

Main effect sensitivity indices have been com-
puted for each line Pf,l to reveal which of the 
input factors is affecting the most their variability. 
Results are presented graphically with a bar plot in 
Figure 8 and reported in Table 3. Table 3 presents 
only the factors leading to relatively high Si, i.e. 

greater than 0.08, and the corresponding compo-
nents. It can be observed that the variability in the 
line 7–8 outage frequency is mainly affected by 
uncertainty in node 7 (generators and load). On 
the other hand, uncertainty in L8 is not affecting 
much the variance of Pf,7–8 but it is the most rel-
evant factor for Pf,8–9, Pf,8–10.

5 DISCUSSION AND CONCLUSIONS

In this paper, the sensitivity of a cascading failures 
model for power grids has been analysed. Variance-
based global sensitivity analysis indices, i.e. Sobol’s 
indices, have been computed to reveal which among 
the uncertainty sources is affecting the most the 
variances of the cascading failure model output. 
The Morris screening indices are also obtained and 
compared to variance based indices to improve 
confidence in the results and better understand 
dependencies between output and factors.

Different system-level and component-level 
indicators have been evaluated using the cascading 
model. The selected metrics were the 95th percen-
tile of the DNS, the average total number of line 
failed and the frequency of line failure for each 
line. The IEEE RTS96 power grid has been selected 
as a representative case study and used to test the 
applicability of the methods to a real-world system. 
Two uncertainty cases (Case A and Case B) have 
been investigated, which were characterised by an 
increasing dimensionality of the aleatory space.

In the Case A, only load variability has been 
accounted for and the result suggested that two 
uncertainties in the loads in node 15 and 18 are the 
major contributors to the extremes of the demand 
not served. A similar result is obtained for the 
average total number of line failed. Morris had 
the advantage of showing a negative relationship 
between the DNS and loads in nodes 15 and 18. 
In reality prices are indeed affected by uncertainty, 
so a sensitivity analysis that assumes fixed prices 
(and therefore fixed generator dispatch) might be 
misleading in identifying critical components in the 

Figure  7. The box plot of the Pf,l realisations corre-
sponding to different load and generation cost samples.

Figure 8. The tornado diagram presenting the mean o 
the elementary effects for the uncertain factors consid-
ered in case B.

Figure 9. The Si indices calculated for the 49 input factors 
and for the Pf,l outputs. The factors from 1 to 17 are loads 
at different locations and last 32 are the generator costs.

Table 3. The most influencing factors for the line failure 
probability. Factors leading to a Si > 0.08.

From To node Factors

7 8 L7, G7(1), G7(2)
8 9 L8

8 10 L8

15 21 L18, G18(1), G21(1)
15 21 L18, G18(1), G21(1),
16 17 L18

17 18 L18, G18,(1), G21 (1)
17 22 L18, G18,(1), G21 (1)
21 22 L18, G18,(1), G21 (1)
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power grid. Thus, in the uncertainty Case B, the 
variability of the generator costs and loads variabil-
ity are both considered. The new economic setting 
changed the underling behaviour of the network 
and, consequently, of the cascading evaluation proc-
ess. The Sobol’s and Morris’ analysis are fairly con-
sistent in pointing out which among the load and 
generators costs are the most relevant for the system 
output. The results are quite different compared to 
case A, due to the difference in the economic setting 
of the generators. In addition, the sensitivity of the 
lines outage frequency has been computed.

This analysis was performed to investigate more 
in detail some cascading-relevant relationships 
between input loads, generators costs and line 
failures. The results are very interesting from an 
engineering perspective and at least 2 results can be 
highlighted which are helpful in a practical context:

•	 The vulnerable lines (i.e. prone to failure) and 
the most relevant factors affecting Pf,l are identi-
fied (using sensitivity indices). This information 
can be helpful to support reliability-related deci-
sion, for instance, in deciding on weather it is 
better to replace the line with one having higher 
capacity (i.e. if  Pf,l high and is similarly affected 
by all the input factor), or if  it may be more use-
ful to intervene on the factors affecting Pf,l (i.e. if  
Pf,l high and sensitive to just few factors);

•	 When the uncertainty in the loads is identified as 
highly relevant for a system-level indicator, it is 
advisable to consider actions such as allocation 
of distributed generators or adopt peak-shaving 
(load variance reduction) control methods. This 
can be beneficial to reduce the uncertainty in the 
reliability performance of the network (reducing 
its variance).

The framework proved to be flexible and com-
putationally quite cheap which is a requirement for 
its application to more realistic large size power 
networks. This will be the focus of future analysis.
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