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Abstract—This paper presents a framework for stochastic
analysis, simulation and optimisation of electric power grids
combined with heat district networks. In this framework, dis-
tributed energy sources can be integrated within the grids
and their performance is modelled. The effect of uncertain
weather-operational conditions on the system cost and reliability
is considered. A Monte Carlo Optimal Power Flow simulator
is employed and statistical indicators of the system cost and
reliability are obtained. Reliability and cost expectations are used
to compare 4 different investments on heat pumps and electric
power generators to be installed on a real-world grid. Generators’
sizes and positions are analysed to reveal the sensitivity of the cost
and reliability of the grid and an optimal investment problem is
tackled by using a multi-objective genetic algorithm.
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I. INTRODUCTION

The present view on Smart Grid projects (e.g. [1]) generally
rates the power grid as the most prominent infrastructure
whilst different systems (e.g. transportation and heat district
networks) received a relatively limited consideration. In
the last years, however, several researchers pointed out the
benefits of combining analysis of power grids to different
networked systems which are inevitably linked. For instance,
integrated analysis of the so-called multi-energy-systems (i.e.
systems for which electricity, heating, cooling, fuels, transport
optimally interact with each other [2]- [3]) can help better
understand collective behaviours and interactions between
interconnected grids.

Investments in renewable energy sources (RES) and energy-
efficient buildings can play an important role in designing
more reliable and sustainable future grids. Distributed
Generators (DGs) and RES, if smartly integrated within
power grids, and can reduce electric energy losses, minimise
carbon dioxide emission and improve grid reliability [4].
However, the high uncertainty associated with their power
outputs generally discourages investments on high energy
penetration levels [5]- [6].

The overall buildings energy consumption shares a large
amount of total energy demand of developed countries (up
to 40%) [7]. Improve energy efficiency of building and heat
power supply reliability is necessary and, for this purpose,
buildings envelopes can be enhanced and efficient heating
and cooling systems installed (e.g. exploiting renewable air
and ground energy [8]- [9]). If energy-efficient technologies
are employed, air source heat pumps are some of the most
viable options on the market.

Air source Heat Pumps (HPs) transfer heat by exploiting a
refrigeration cycle and often result economically convenient
due to high coefficients of performance (i.e. efficiency).
One of the major downsides is that their operative states
are strongly affected by uncertain, variable ambient air
temperate and, thus, some sort of heating backup system
is normally required to guarantee a reliable heating supply
[9]. An increasing number of research papers discussed the
effects of combining heat pumps with renewable distributed
electric generators [10]. However, to the author’s knowledge,
just a few works embedded distributed air source heat
pumps model within stochastic frameworks for uncertainty
quantification. For instance, Cesena, Capuder and Mancarella
[11] proposed an optimisation framework for distributed
multi-energy-systems allocating combined heat power devices
and considering long-term uncertainty.

This paper presents a computational framework for stochas-
tic simulation and optimisation of distributed generators within
interconnected heat and electric power grids. Electric and heat
power generators can be allocated within the nodes of the grid.
The renewable power outputs are affected by variable weather
conditions and relevant sources of uncertainty are considered
within the stochastic model (e.g. electric and thermal load
variability, wind speed variability, etc.). Linkage functions
are specifically designed to couple the heating system to the
electrical grid and a Monte Carlo Optimal-Power-Flow (MC-
OPF) simulator is used to assess the system reliability and cost.
A variance-based sensitivity analysis method is adopted to



reveal the effect of different generators type, size and location
on the system cost and reliability. To conclude, a multi-
objective optimisation method is adopted to find a set of good
investments strategies, i.e. the optimal DGs expansion plan
which minimises both the system cost and unreliability index.
The framework is flexible and can account for the unavail-
ability of specific components (e.g. unplanned maintenance for
Heat pumps or WT) although are here neglected for simplicity.
In a future extension of the work, random components failures
will be considered.

II. STOCHASTIC WEATHER AND COMPONENTS
MODELLING

The structure of a power grid can be mathematically repre-
sented by a graph Gel(Nel,Eel), such that i are nodes within
the set of electric grid nodes Nel and l = (i, j) are electric
cables (between nodes i and j) within the lines set Eel.
Similarly, the structure of a district heating network can be
represented by a graph Gth(Nth,Eth) where Eth is the pipes
set.

A. Weather Model and Power Loads

The weather model assumes the wind speed (v), the solar
irradiance (s) and the external air temperature (Text) to be
random variables distributed as a Rayleigh, Beta and Normal
PDF, respectively [4]. The parameters of the distributions (σv ,
a, b, µText

and σText
) are estimated using historical data for

the geographical location in exam. For simplicity, the weather
condition is assumed uniform over Gel and Gth.
The electric and thermal power load (Lth,i(t) and Lth,i(t))
at node i and time t are characterised by normal probability
distributions [4]; the parameters of the distributions σel,i(t),
µel,i(t), σth,i(t) and µth,i(t) estimated using historical data.

B. Electric Power Distributed Generators

Four types of electric power DGs are considered: Wind
Turbines (WT), Photovoltaic panels (PV), Storage systems
(ST) and Electric Vehicles (EV). A probabilistic model for
DGs is adopted and for its complete description, the reader is
reminded [4]- [12].

1) Wind Turbines and Photovoltaic Panels: The power
produced by a wind turbine, Pw(v), depends on the (random)
wind speed v, the cut-in wind speed vci in [m/s], the rated
wind speed vr in [m/s], the cut-out wind speed vco in [m/s]
and the rated power output for the turbine P ra

w in [kW] [4].
The power output from PV is computed as Ppv(s,Text) =
ncells · FF · V · I , where ncells is its number of cells, FF
is the filling factor and the current I and the voltage V are
related to the sun radiation s, the external air temperature Text
[12].

2) Storage Systems and Electric Vehicles: Storage systems
and, similarly, electric vehicles can inject or withdraw electric
power from the network. Three EVs operating states (op) are
considered: the vehicle to grid (V2G), the grid to vehicle
(G2V) and the disconnected, discrete probability mass is
associated to the operative states f(t,op). The power injected

or demanded by EVs, Pev(op), is equal to plus or minus the
rated power P ra

EV [kW] if the vehicle are in the discharging
or charging states, respectively. If the randomly sampled
operative state result disconnected, Pev(op) is set to 0. The
model for storage systems is analogous [4] but, for simplicity,
only discharge operative states are considered.

C. Heat Pumps

The thermal power output PHP of an air-to-water mono
compressor On-Off HP depends on the external air temperature
as follows [9]:

PHP (Text) = a1(Tw) · Text + b1(Tw) · T 2
ext + c1(Tw)

Similarly, the HP’s coefficient of performance at full load
depends on Text as follows [9]:

COPDC(Text) = a2(Tw) · Text + b2(Tw) · T 2
ext + c2(Tw)

where Tw is the hot water temperature provided to the thermal
load and the regression coefficients a1, a2, b1, b2, c1, c2. In the
proposed model, Tw is assumed to be 35 °C and constant, this
is a realistic assumption when the HP is coupled to a radiant
floor heating loop during the heating season [9]- [13]. The HP
temperature operating limit (TOL) depends on the specific
heat pump. For the On-Off HP analysed in this work TOL
is equal to -10 °C and the heat limit external temperature is
assumed to be +16 °C. Thus, if Text > +16°C or Text <
−10°C, PHP is set to 0.

D. Heat and Electric Power Coupling

The thermal power output PHP of an heat pump is re-
lated to the electrical power demanded by the pump LHP,el

trough the coefficient of performance COPPL at partial loads,
LHP,el = PHP

COPPL
. The COPPL takes into account the losses

linked to the on-off conditions when the pump is operated at
partial regime and can be obtained by weighting the COPDC

for a function of the thermal load, the HP power output and
a degradation coefficient (see [9] for further details).
In this model when PHP,i < Lth,i, the residual heat demand
in the node i is fulfilled by an back-up heating system. For
simplicity, only electric back-up systems are considered. If
the heat power demand exceeds the production, the electric
power required by the back-up system is LBU,el(t) = Lth(t)−
PHP (t), where the node index i has been dropped for ease
of notation. The aggregated electric power demand at each
node is simply obtained as Lel(t) = Pd,el(t) + LHT,el(t) +
LBU,el(t), where Pd,el(t) is the random component of the
electric power demanded by node i at time t.

III. MONTE CARLO OPTIMAL POWER FLOW AND
RELIABILITY INDEX

In this work, a Monte Carlo Optimal-Power-Flow [4] is
employed to evaluate the effect of uncertainty over the system.
The MC-OPF procedure is summarised by the following 5
steps:



1 Initialisation: Provide DGs size, type and location. Input
number of Monte Carlo runs (NMC) and parameters of
the stochastic model.

2 Sampling: Random sample the uncertain weather vari-
ables (s, v, Text), the time of the day (t) and the grids
components operative states (op(t), Est, Lth(t), Lel(t))
from the stochastic model.

3 Loads/production: The weather conditions are used to
compute the available power from renewable generators
(see Section II-B and II-C). The coupling equations are
solved and electric load increased by the electric power
demanded by HPs and back-up systems.

4 Grid Analysis: The electric load and the DGs power
outputs are forwarded to an optimal power flow (OPF)
solver in Eq.1. Outputs are the minimum operative cost
for the grid Cmin

O,i and an indicator of the system re-
liability and the Energy-not-Supplied (ENS) computed

as ENS =
Th∑
t=1

∑
j∈Nel

Lcut,j,t · Th, where Lcut,j,t is the

load curtailed at node j at time t and Th is the simulation
time.

5 Collect Results: Steps 2, 3 and 4 are repeated NMC

times. The probability density function of the ENS
and Cglb are obtained and the expectations com-

puted as E[ENS] =
NMC∑
i=1

ENSi/NMC and E[Cglb] =

NMC∑
i=1

(Cmin
O,i + Cinv − Cinc,i)/NMC . Cinv is the cost of

the investment in DGs, Cinc,i is a gain due to the
incentives available for producing power with renewable
sources.

The cost Cinv is computed as Cinv =
∑

J(NJ ·Cinv,J/Tinv,J)
and depends only on the initial investment cost on distributed
gnerators of type J (i.e. the number NJ times cost per
module), prorated hourly over the lifetime Tinv,J . The gain
due to available incentives is computed as

∑
J IncJ ·Pg,J and

depends on the random amount of renewable power produced
within the scenario i. IncJ is the available incentives for
producing a unit of power with J and is assumed here to
be 2.61 [p/kWh] for renewable air source heat power [14] and
2.4 [p/kWh] plus the price of the electricity (computed as in
[4]) which is saved thanks to the renewable production.
The optimal power flow solves the economic dispatch problem
for the grid, i.e. it schedules the power produced by the
generators Pg so that the operational cost is minimised . In this
optimal power flow formulation loads can be curtailed [4], this
is done if operational or physical constraints (e.g. line thermal
limits, generators capacity, etc.) cannot be fulfilled otherwise.
Mathematically, the minimization problem is defined as fol-
lows [15]:

Cmin
O,i = min

Pg,Lcut

Ng∑
g=1

Cg · Pg +

Nl∑
i=1

Ccut ·Lcut,i (1)

where Cmin
O,i is the minimum total operative cost for the power

grid, Ng is the total number of electric power generators

allocated within the electric grid (including DGs), and Cg and
Ccut are the cost per-unit of power for the generators and the
load curtailed, respectively.

IV. MULTI OBJECTIVE OPTIMISATION: OPTIMAL POWER
SOURCES ALLOCATION

The goal of the optimisation analysis is to identify an
optimal investment plan on distributed generators (i.e. op-
timal HPs, WTs, PVs, STs and EVs sizes and positions)
which minimises both the E[ENS] and E[Cglb]. The Non-
Dominated Sorted Genetic Algorithm version two (NSGA-
II) is the solver used due to the highly non-linear behaviour
of the system and not treatable analytical solution [4]. The
optimisation procedure can be summarised as follows: First,
the number of generations Ngen, the population size Npop,
the number of MC-OPF runs are selected. A population of
chromosome Chrom = [PV,ST,WT,EV,HP] is generated
where, for instance, PV is an [1× |Nel|] vector and the ith

element contains the number of PVs allocated within the
ith electric node. Each chromosome Chrom is forwarded to
the MC-OPF (see Section III) and its E[ENS] and E[Cglb]
are estimated. Then the evolutionary procedure is performed,
which includes sorting and ranking the chromosomes based
on non-domination and crowding distance criteria an use
binary crossover and polynomial mutation operations to create
new generations of chromosomes. The evolutionary routine is
repeated until the predefined number of generation Ngen is
reached.

V. CASE STUDY: THE BARRY ISLAND NETWORK

The Barry island combined heat-electric system [2] is
selected to test the framework. The layout for the multi-energy
system is presented in Fig.1. The district heating network is
composed of 32 nodes of which 20 are heat demand nodes
(i.e. aggregation of buildings’ heat loads). Differently from
Fig.1 and accordingly to [2], an additional heat power demand
is considered in node 7 and connected to the first electric
busbar (i in Fig.1). The power grid is composed of 8 bus
bars, 3 main generator sources in nodes 2, 8 and 7 and 5
electric loads, lumped from the heat network as displayed
in Fig.1. The 7 electric cables current rating is 400 [A] and
resistances and reactances are R=0.164 and X =0.08 [Ω/km],
respectively. For simplicity, the pipes of the district heating
network are neglected and only its nodes are considered in
this analysis. For further details on the system, the reader is
referred to [2]. The mean values and standard deviations of
the thermal and electric loads are assumed to be a percentage
of the reference loads which are displayed in Fig.1, adapted
from [2]. Examples of the thermal and electric power load
realisation over 10 days simulation are presented in the upper
and lower panel in Fig.2, respectively. The parameters of the
weather stochastic model, DGs and heat pumps are reported
in Table I.

A. Results of the Stochastic Analysis

The uncertainty in the system reliability index and cost
is quantified using the Monte Carlo algorithm presented in
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Fig. 1. The Barry island power grid and heat network (modified from [2]). In
the figure are displayed links lengths, main electric generators positions and
the reference magnitude for electric and thermal loads at each node.

TABLE I
THE DGS PARAMETERS AND THE STOCHASTIC WEATHER MODEL.

Heat and Electric Power DGs’ parameters [4]- [9]- [12]
WT ST & EV PV On-Off HP

vco = 23.8 ES = 0.042 Voc = 55.5 a1 = 0.839
vci = 3.8 P ra

st = 0.275 IMPP = 1.38 a2 = 0.0874
vr = 9.5 Cinv = 6.76e3 Not = 43 b1 = 0.011
P ra
w = 50 Isc = 1.8 b2 = 12e-4

Cinv = 1.13e5 P ra
ev = 6.3 VMPP = 38 c1 = 0.877

Cinv = 1.65e4 ki = 1.40 c2 = 0.103
kv = 194 Tw = 35
kv = 194 Cinv = 1e4

Cinv = 2.4e3
Parameters of the Stochastic Weather Model

Wind Sun Temperature
σv = 7.96 a = 0.26 µText = 6

b = 0.73 σText = 3

Section III and 4 cases have been analysed. In the first
case (C-1), the original network is tested (neither heat nor
electric power generators have been allocated). For the second
investment case (C-2), the electric grid invests on distributed
electric power generators (5 PVs, 5 STs, 1 WT and 1 EV
in each node) but not on heat power generators. Case 3 (C-
3) accounts for an investment on both electric and heat power
generators (equivalent to C-2 but also 1 heat pump is allocated
within each node of the heat network). For case 4 (C-4) only
heat pumps have been installed. The 4 different cases are
summarised using a simple vector notation as follows (see
Section IV):

C-1 [PV,ST,WT,EV,HP] = [0,0,0,0,0]
C-2 [PV,ST,WT,EV,HP] = [5,5,1,1,0]
C-3 [PV,ST,WT,EV,HP] = [5,5,1,1,1]
C-4 [PV,ST,WT,EV,HP] = [0,0,0,0,1]

The MC-OPF run number was set to 3000 and the results of
each run are the probability distribution functions of the ENS
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Fig. 2. An examples of random realisation of thermal power and nodal electric
power demanded at each node over a simulation time of 240 hours.

and Cglb. The results for the expectations, the coefficients of
variations (CV ) and the 95th percentiles (p95) are reported in
TableII. It can be observed that C-1 produces the lower E[Cglb]
and lower grids reliability (i.e. higher E[ENS]) whilst the
case with a significant investment (C-3) resulted in the higher
reliability but also higher costs. On the other hand, C-2 and C-
4 resulted in a compromise solution, i.e. they improved less the
system reliability but for a moderate cost. The results pointed
out that a combined investment on HP and electric power
generators can result in a positive enhancement of the system
reliability. Investing on DGs can lead to higher expected
reliability, however, the CV increases when renewable sources
are allocated in the grids. This indicates an higher variability
and possibly higher risk of hazardous, extreme, low probability
scenarios if renewable energy sources are adopted.

TABLE II
THE RESULTS FOR THE 4 INVESTMENT CASES ON DGS

Case C-1 C-2 C-3 C-4
E[ENS] 1110.4 793.7 498 723.9
CV [ENS] 0.59 0.85 1.18 0.87
p95[ENS] 2286 2178 1617 1779
E[Cglb] 179.5 203.2 209.7 203.8
CV [Cglb] 0.45 0.39 0.31 0.37
p95[Cglb] 291 302 289 296

B. Optimisation and Sensitivity Results

The sensitivity of the expected cost and ENS to generators
sizes and positions is quantified using a variance-based method
[16]. This first order Sobol’s indices, Si = Var[E[y|xi]]

Var[y] , (i.e.
relative changes in outputs variances fixing decision variables
one-at-a-time) are obtained by sampling uniformly 25000
random realisations from the design space. Each realisation
is a vector of 64 elements, the first 32 contain the number
of electric power DGs installed in Gel (4 for each of the 8
electric nodes) and the last 32 contain the number of HPs
allocated within Gth. The number of PVs and STs for each
node is assumed to be constrained between 0 and 10, whilst
other generators can vary between 0 and 2. The expected
cost and expected ENS have been estimated using the Monte
Carlo OPF method for each realisation. The first order Sobol’s
indices for E[ENS] and E[Cglb] are presented in top and
bottom panel of Fig.3, respectively. It can be observed a
sensitivity of the grid reliability to the allocation of wind
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Fig. 3. The first order sensitivity indices Si for the expected ENS (top
panel) and expected cost (bottom panel).
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Fig. 4. The 3 best chromosomes selected among the best front in the
generation of the NSGA-II procedure.

TABLE III
THE LOW COST, HIGH RELIABILITY AND COMPROMISE

INVESTMENT SOLUTIONS

Solution Reliable Compromise Cheap
E[ENS] 320 370 842
E[Cglb] 205 200 195

CV [ENS] 1.55 1.46 0.79
p95[ENS] 1302 1578 2520
CV [Cglb] 0.27 0.29 0.42
p95[Cglb] 287.1 284.3 301.1

turbines and heat pumps. Other generators seem to be less
relevant, probably due to the smaller power output capacity
and the limited modularity allowed within this analysis (e.g.
max 10 PVs and 10 STs).
The NSGA-II optimisation procedure starts by selecting Npop,
Ngen and NMC set to 500, 50 and 2000, respectively. Each
chromosome decision vector is, in this case, a list of 64
integers which indicate the amount and type of distributed
generators allocated in each node. The fitness of the best chro-
mosomes evaluated within the last generation are displayed in
Fig.4. The y-axis contains the E[ENS] and the y-axis E[Cglb];
the ‘best reliable’ solution, the ‘best cheap’ solution and a
compromise solution (average cost and reliability) have been
selected and displayed with red diamond markers in Fig.4).

VI. DISCUSSION AND CONCLUSION

A stochastic framework for simulations and analysis of cou-
pled electric power and heating networks has been presented.
A probabilistic model is described which allows realistic
weather-operational scenarios to be generated. A Monte Carlo
OPF simulator is used to quantify reliability and cost of 4
investment scenarios on the Barry Island power-heat network.
The results suggest that a combined investment on renewable
heat and electric power generators provides greater benefits for
the system reliability, and for a moderate cost due to available
incentives. Sensitivity analysis pointed out that installation of
wind turbines and heat pumps are affecting most the system
reliability. To conclude, a set of good sizes and positions
for HPs and DGs has been obtained thanks to a stochastic
optimisation strategy.
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