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Abstract

In this work, we investigate Reinforcement Learning (RL) for managing Operation and Maintenance
(O&M) of power grids equipped with Prognostic and Health Management (PHM) capabilities, which
allow tracking the health state of the grid components. RL exploits this information to select optimal
O&M actions on the grid components giving rise to state-action-reward trajectories maximising the
expected profit. A scaled-down case study is solved for a power grid, and strengths and weaknesses
of the framework are discussed.

Keywords: Reinforcement Learning, Prognostic and Health Management, Operation and Mainte-
nance, Degradation, Power Grid, Uncertainty

1 Introduction
Modern power grids are complex systems, including many highly interconnected components. Maximising
the grid productivity while ensuring a safe and reliable delivery of power is of uttermost importance for
grid operators. This requires developing robust decision-making frameworks, which give account to both
the complexity of the asset and the uncertainties on its operational conditions, component degradation,
failure behaviours, external environment, etc.
Nowadays, the grid management issue is further challenged by the possibility of equipping grid elements
with Prognostics and Health Management (PHM) capabilities, which allow tracking the health state evo-
lution. This information can be exploited by grid operators to further increase the profitability of their
assets [1–6].

Reinforcement Learning (RL) [7, 8] has been used in the last decades to solve a variety of realistic
control and decision-making issues in the presence of uncertainty, including power grid management. In
the RL paradigm, a controller (i.e. the decision maker) learns from the interaction with the environ-
ment (e.g. the grid) by observing states, collecting rewards and selecting actions to maximise the future
revenues, considering the aleatory uncertainties in the environment behavior. The state-action-reward
trajectories [9] can be gathered from direct interaction with the real system (e.g. [10]), or from its realistic
simulation [7]. This makes RL suitable to power grid management optimization, as it can cope with both
the complexity of the asset and the unavoidable uncertainties related to its operation.
In [6], an RL framework based on Q-learning is proposed to solve constrained load flow and reactive power
control problems in power grids. Kuznetsova et al. [5] develop an optimisation scheme for consumers
actions management in the microgrid contest and accounting for renewable volatility and environmental
uncertainty. In [9], a comparison between RL and a predictive control model is presented for a power
grid damping problem. In [4], the authors review recent advancements in intelligent control of micro
grids including few attempts using RL methods. However, none of the revised works employs RL to find
optimal combined Operation and Maintenance (O&M) policies for power grids with degrading elements.

We present an RL framework to support O&M decisions for power grids equipped with PHM systems,
which seeks for the settings of the generator power outputs and the scheduling of preventive maintenance
actions that maximize the grid load balance and expected profit over an infinite time horizon, while
considering the uncertainty of power production from Renewable Energy Sources (RES), power loads
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and component failure behaviors.
The rest of this paper is organized as follows: Section 2 presents the RL framework for optimal decision
making under uncertainty. A scaled-down power grid application is proposed in Section 3, whereas the
results and limitations of RL are discussed in Sections 4 and 5, respectively. Section 6 closes the paper.

2 Modelling framework for optimal decision making under uncertainty
As anticipated above, developing a RL framework for power grid O&M management requires defining the
environment, the actions that the agent can take in every state of the environment, the state transitions
the actions lead to and, finally, the rewards associated to each state-action-transition step.

2.1 State space

Consider a power grid made up of elements C = {1, ..., N}, physically and/or functionally interconnected,
according to the given grid structure. Similarly to [11], the features of the grid elements defining the
environment are the Nd degradation mechanisms affecting the degrading components d ∈ D ⊆ C and
the Np setting variables of power sources p ∈ P ⊆ C. For simplicity, we assume D = {1, ..., |D|},
P = {|D|+ 1, ..., |D|+ |P |} and |D|+ |P | ≤ N .
The degradation processes evolve independently on each other according to a Markov process defining the
transition probability from state sdi (t) at time t to the next state sdi (t+ 1), where sdi (t) ∈ {1, ..., Sdi } ∀t,
d ∈ D, i = 1, ..., Nd. Similarly, for the power sources production, a Markov process defines the prob-
abilistic dynamic of power setting variables from spj (t) at time t to the next state spj (t + 1), where
spj (t) ∈ {1, ..., S

p
j } ∀t, p ∈ P, j = 1, ..., Np. Then, system state vector S ∈ S at time t reads:

S(t) =
[
s11(t), s12(t), . . . , s

|P |+|D|
N |P |+|D|

(t)
]
∈ S (1)

2.2 Actions

Actions can be performed on the grid components g ∈ G ⊆ C at each t. The system action vector a ∈ A
at time t is:

a(t) =
[
ag1(t), . . . , ag%(t), . . . , a|g||G|(t)

]
∈ A (2)

were action ag%(t) is selected for component g% ∈ G among a set of mutually exclusive actions ag% ∈ Ag.
The action set Ag% can include operational actions (e.g. closure of a valve, generator power ramp up, etc.)
and maintenance actions (e.g. preventive and corrective). Constraints can be defined for reducing Ag% to

a subset Âg% ⊆ Ag% . For example, Corrective Maintenance (CM), cannot be taken on As-Good-As-New
(AGAN) components and, similarly, it is mandatory action for failed components. In an optimistic view
[11], both Preventive Maintenance (PM) and CM actions are assumed to restore the AGAN state for
each component. An example of Markov process for a 4 degradation state component is presented in
Fig.1, where circle markers indicate maintenance actions and squared markers indicate other actions, i.e.
operational actions.

2.3 Transition probabilities

Transition probability matrices are associated to each feature f of each component c ∈ P ∪D and to each
action a ∈ A, where f ∈ {1, .., Nd} if c ∈ D and f ∈ {1, .., Np} otherwise, as follows:

Pa
c,f =


p1,1 p1,2 · · · p1,Sc

f

p2,1 p2,2 · · · p2,Sc
f

...
...

. . .
...

pSc
f ,1

pSc
f ,2

· · · pSc
f ,S

c
f


a

c,f

(3)

where pi,j represents the probability of transition from state i to state j of feature f of component c
and conditional to the action a in a time varying setting, i.e. Pa

c,f (sj |a, si). The normalization propriety

holds, i.e.
n∑
j=1

pi,j = 1. In practice, element pi,j of the transition probability matrix Pa
c,f can be estimated

as the relative frequency of the measured component state to fall into the jth state at time t+ 1 provided
that it was at the ith state in the previous time step when the action a was taken.

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018



Operation Actions

Mainteinance Actions

 

AGAN

Deg1

Deg2

Fail

PM

PM

CM

PM

Figure 1: The Markov Decision Process associated to the health state of a degrading component.

2.4 Rewards

Numerical rewards are case-specific and obtained by solving a physic-economic model of the system,
which evaluates how good is the transition from one state to another given that a is taken:

R(t) = F (S(t+ 1) , a(t) , S(t)) ∈ R

2.5 Reinforcement Learning and SARSA(λ) method

Generally speaking, the goal of RL methods for optimal control is to find the optimal action-value function
Qπ∗(S,a), which provides an estimation of future revenues when an action a is taken in state S, following
the optimal policy π∗:

Qπ∗(S,a) = Eπ∗
[ ∞∑
t=0

R(t)|S(t),a(t)

]
(4)

Among the wide range of RL algorithms, we adopt SARSA(λ), which is a temporal difference learning
methods (i.e. it changes an earlier estimate of Q based on how it differs from a later estimate) employing
eligibility traces to carry out backups over n-steps and not just over one step [7]. Details on SARSA(λ)
are provided in Algorithm 1 in the Appendix.

3 Case study
A scaled-down power grid case study is used to test the RL decision making framework. The grid
includes: 2 controllable generators; 5 cables for the power transmission; 2 non-controllable RES which
are connected to 2 loads and provide them electric power depending on random weather conditions (Fig.
2). Then, |C|=11. Two traditional generators (Gen1 and Gen2) are installed as displayed in Fig. 2 and
controlled to minimize power unbalances on the grid. We assume that the 2 controllable generators and
links 3 and 4 are affected by degradation and, thus, are equipped with PHM capabilities to inform the
decision-maker on their degradation states, then D = {1, 2, 3, 4}. The two loads and the two renewable
generators define the grid power setting, P = {5, 6, 7, 8}

3.1 States and Actions

In the case study, we consider Nd = 1 degradation features, d = 1, .., 4 and Np = 1 power features
p = 1, .., 4. We consider 4 degradation states for the generators, sd1 = {1, .., Sd1 = 4} for d = 1, 2, whereas
three states are associated to the power lines sd1 = {1, .., Sd1 = 3}, d = 3, 4. State 1 refers to the AGAN
conditions, state Sd1 to the failure state and states 1 < sd1 < Sd1 to degraded states in ascending order.
For each load, we consider 3 states of increasing power demand sp1 = {1, .., Sp1 = 3} for p = 5, 6 and
three states of increasing power production are associated to renewable sources, sp1 = {1, .., Sp1 = 3} for

8th International Workshop on Reliable Computing
University of Liverpool, Liverpool, UK

16–18 July 2018



 

Gen 2

1

2

3 4

Gen 1

RES 2RES 1

Load 1 Load 2

PHM System 

6

7 8

5

Figure 2: The power grid structure and the position of the 4 PHM capabilities, 2 renewable sources, 2 loads and
2 controllable generators.

p = 7, 8. Then, the total number of state vectors combinations is 11664 and the grid state vector at time
t is defined as follows:

S(t) = {s11, s21, s31, s41, s51, s61, s71, s81}

The agent can operate both generators with the aim to maximise the system revenue by minimizing
unbalance between demand and production, while preserving the structural and functional integrity of
the system, g ∈ G = {1, 2}. Other actions can be performed by other agents on other components
(e.g. transmission lines), but being outside from the control domain of the first agent those are assumed
included in the environment. Then, the action vector reads a = [a1, a2]. Five O&M actions can be
performed on each controllable generator, for a total of 25 combinations, thus giving rise to a 291600
state-action pairs. The action set for each generator is the following:

Ag = {1, .., 5} g ∈ {1, 2}

where the first 3 (operational) actions affect the power output of the generator, changing it to one of the
3 allowed power levels. The last 2 actions are preventive and corrective maintenance actions, respectively.
It is assumed that CM is mandatory for failed generators. Furthermore, highly degraded generators (i.e.
Sdg = 3, d = 1, 2) are assumed degraded in their operational performance and only the lower power
output can be obtained (only ag = 1 action is allowed). Tables 1-3 display the costs for each action and
the corresponding power output of the generator, the line electric parameters and the relation between
state indices sp1 and the power variable settings, respectively.

Table 1: The power output of the 2 generators in [MW]
associated to the 5 available actions and action costs
in monetary unit [m.u.].

Action: 1 2 3 4 5

Pg=1 [MW] 40 50 100 0 0

Pg=2 [MW] 50 60 120 0 0

Ca,g [m.u.] 0 0 0 10 500

Table 2: The transmission lines proprieties.

From To Am [A] X

Gen 1 Load 1 125 0.0845
Gen 1 Load 2 135 0.0719
Gen 1 Gen 2 135 0.0507
Load 1 Gen 2 115 0.2260
Load 2 Gen 2 115 0.2260

Table 3: The physical values of the power settings in [MW] associated to each state Sp1 of component p ∈ P .

State index sp1 1 2 3

p = 5 Demanded [MW] 60 100 140

p = 6 Demanded [MW] 20 50 110

p = 7 Produced [MW] 0 20 30

p = 8 Produced [MW] 0 20 60
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3.2 Probabilistic Model
State transitions may occur from time t to the next time step t + 1 and are specifically defined for
each feature of each component. The 2 loads have identical transition probability matrices and also the
degradation of the transmission cables and generators are described by the same Markov process. Thus,
for ease of notation, the component subscripts have been dropped. Each action a ∈ A is associated to a
specific transition probability matrix Pa

g describing the evolution of the generator health state conditioned
by its operative state or maintenance action. It can be noticed that probabilities associated to operational
actions, namely ag = 1, 2, 3, affect differently the degradation of the component. For those actions, the
bottom row corresponding to the failed state has only zero entries. This is to indicate that operational
actions cannot be taken for failed generators, but only CM is allowed. The transition matrices for the
considered features are defined as follows:

Pad=1
d =


0.98 0.02 0 0

0 0.95 0.05 0
0 0 0.9 0.1
0 0 0 0

 d = 1, 2 Pad=2
d =


0.97 0.03 0 0

0 0.95 0.05 0
0 0 0.9 0.1
0 0 0 0

 d = 1, 2

Pad=3
d =


0.95 0.04 0.01 0

0 0.95 0.04 0.01
0 0 0.97 0.03
0 0 0 0

 d = 1, 2 Pad=4
d =


1 0 0 0

0.5 0 0.5 0
0.5 0 0 0.5
0 0 0 0

 d = 1, 2

Pad=5
d =


0 0 0 0
0 0 0 0
0 0 0 0

0.15 0 0 0.85

 d = 1, 2

Pa
d =

0.9 0.08 0.02
0 0.97 0.03

0.1 0 0.9

∀ a, d = 3, 4 Pa
p =

0.4 0.3 0.3
0.3 0.3 0.4
0.2 0.4 0.4

∀ a, p = 5, 6

Pa
7 =

0.5 0.1 0.4
0.3 0.3 0.4
0.1 0.4 0.5

∀ a Pa
8 =

0.5 0.2 0.3
0.4 0.4 0.2
0 0.5 0.5

∀ a

3.3 Reward Model

When the agent performs an action at time t; the environment provides a reward and leads the system to
its state at time t+1. The reward is calculated as the sum of 4 different terms: (1) the revenue from selling
electric power, (2) the cost of producing electric power by traditional generators, (3) the cost associated
to the performed actions and (4) the cost of not serving energy to the customers. Mathematically, the
reward reads:

R(t) =

6∑
p=5

(Lp(t)− ENSp(t)/∆t) · Cel −
2∑
g=1

Pg · Cg −
2∑
g=1

Ca,g −
6∑
p=5

ENSp(T ) · CENS (5)

where Lp is the power demanded by component p, Cel is the price paid by the loads for per-unit of
electric power, Pg is the power produced by the generators, Cg is the cost of producing the unit of power,
Ca,g is the cost of the action a on the generator g, ∆t is the time difference between the present and
the next system state and it is assumed to be 1 h, ENSp is the energy not supplied to the load p and
is a function of the grid state vector and lines and generators electrical proprieties and availability, i.e.
ENS(t) = G(S,Am,X) where G defines the constrained DC power flow solver [12]. CENS is the cost of
the energy not supplied. The costs CENS , Cg and Cel are set to 5, 4 and 0.145 monetary unit (m.u.)
per-unit of energy or power, respectively.

4 Results and Discussions
The SARSA(λ) algorithm (Algorithm 1 in the Appendix) has been used to provide an approximate so-
lution to the decision problem. The stochastic grid model is used to sample control trajectories only, i.e.
it provides a reward and a new state when an action and the old state is provided as input. The SARSA
method has been run changing parameters setting and accumulating eligibility traces. The initial state
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s = S(t = 0) has been selected for the episodic loop randomly, using a degradation-weighted probability

mass function fS(s) ∝
|D|∑
d=1

sd1. This sampling scheme is used to better estimate action-value functions

in rarely visited sates (i.e. low-probability states with many failed/highly degraded components), which
speeds up the convergence of the SARSA method. For validation, Bellman’s optimality [13]-[14] has been
solved to provide a reference optimal action-value function. The Bellman’s results are in good agreement
with the SARSA results, as it can be seen from Fig. 3.
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Figure 3: The plot shows a comparison of the maximum Qπ∗(S,a) for 3 states indicative of the different state-
action value levels, obtained by SARSA(0.5) algorithm and T = 50 (solid lines) and the reference Bellman’s
solution of the underlying Markov Decision Process (dashed lines).

The SARSA(λ) results are summarised in Fig. 4, where the curves provide a compact visualization
of the distribution of Qπ∗(S,a) over the states for the available 25 combinations of actions. Three clus-
ters can be identified: on the far left, we find the set of states from which CM on both generators is
performed; being CM a costly action, this leads to a negative expectation of the discounted reward. The
second cluster (C 2 ) corresponds to the 8 combination of one CM and any other action on the operating
generator. The final cluster (C 1 ) of 16 combinations of actions includes only PM and operational actions.
If corrective maintenance is not performed, higher rewards are expected.

Both Generators
Corrective 

Mainteinance

One Generator
Corrective 

Mainteinance

No
Corrective 

Mainteinance

C 1C 2C 3

Figure 4: The Q(s, a) values displayed using ECDFs and the 3 clusters.

In Fig. 5, each sub-plot shows the the highest expected discounted power grid return, Qπ∗(S,a),
adopting the optimal policy, conditional to a specific degradation states of the generators and for increas-
ing electric load demand. It can be noticed that if the generators are both healthy or slightly degraded
(i.e.

∑2
d=1 s

d
1 = 2, 3, 4) an increment in the overall load demand leads to an increment in the expected

reward, due to the larger revenues from selling more electric energy to the customers. On the other hand,
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if the generators are highly degraded or failed (i.e.
∑2
d=1 s

d
1 = 7, 8), an increment in the load demand

leads to a drop in the expected revenue. This is due to the increasing risk of load curtailments and
associated cost (i.e. cost of energy not supplied), and to the impacting PM and CM actions costs.

Figure 5: The maximum Qπ∗(S,a) (i.e. maximum expected discounted cumulative reward) for increasing total
load and different degrading condition of the generators.

4.1 Policies comparison

We have empirically found that SARSA(0.5) policies outperform SARSA(λ), λ = 0 and λ = 1. Thus,
two SARSA(0.5) have been further investigated, by setting the truncation windows T to 50 and 250 time
steps for each episode, respectively. Table 4 shows the results of the SARSA(λ) algorithms (columns 3
and 4, respectively) and compares them with the MDP (Bellman’s optimality) solution (column 2) and
2 artificial suboptimal policies: Q50rnd (column 5), which is artificially obtained randomizing the action
to be selected in 50 % of the states and selecting the MDP optimal action for the remaining states and
Q100rnd (column 6), where all states have a random action associated with. Three representative system
states S1 = [1, 1, 1, 1, 1, 1, 1, 1], S2 = [4, 1, 1, 1, 1, 1, 1, 1] and S3 = [4, 4, 3, 3, 3, 3, 3, 3] are used to compare
the expected discounted return Q. The 3 states are associated with substantially different rewards as
they have been selected from the 3 clusters C 1, C 2 and C 3, respectively (see Fig. 4): S1 has both
generators in the AGAN state, S2 has on generator out of service whilst S3 has both generators failed.
Act is defined as the portion of actions taken from the SARSA(λ) policies that are equal to those taken
using the reference MDP optimal policy in the corresponding states; E[R(t)] is the expected averaged

non-discounted return, i.e. E
[∑T

t=1 R(t)

T

]
, independent from the initial state of the system. It is interesting

to notice that SARSA(0.5) provides better policies (i.e. higher expected discounted and non-discounted
returns) compared to Q50rnd and Q100rnd. This is true even if Q50rnd has higher Act compared to the
SARSA policies, i.e. more than 60 % of the Q50rnd actions are equal to the MDP actions whilst less than
50 % for the SARSA. This points out that the optimal policy is very sensitive to some of the state-action
combinations and less to others. In other words, taking the wrong action in some states can lead to
a catastrophic drop in the expected return, whilst in other cases a sub-optimal action affects less the
expected revenue (e.g. making generator 1 produce power rather than generator 2 or vice versa).

Fig. 6 presents in details 2 control trajectories obtained selecting greedily actions with the MDP
Bellman’s policy (top plot) and the SARSA(λ) policy (bottom plot), rewards are displayed on the y-axis
and actions and states (see Table 5) are associated to each time step. It is interesting to observe that
by following an optimal policy, PM actions are sometimes recommended even if the generators are As-
Good-As-New. This might seem counter intuitive, but it can be explained considering the degradation
model settings. A PM action taken in an AGAN degradation state will assure a transition to the AGAN
state. In this sense, the MDP policy is ready to accept a slightly lower revenue (due to PM costs), but
with the advantage of suspending the degradation process, especially when the power produced by RES
can be used to minimise unbalances between power production and the 2 loads are small.
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Table 4: The MDP Bellman’s optimality and the RL results compared with suboptimal policies.

MDP SARSA(0.5) Q50rnd Q100rnd

QS1
5719 5511 5555 4191 2028

QS2 2898 2577 2664 1297 -1229
QS3 -1721 -1816 -1813 -2956 -4288
Act top1 100 % 48.8 % 49.1 % 62.1% 24.8%
Act top3 100 % 66.5 % 66.5 % 71.4% 43.1%
E[R(t)] 529.8 478.8 488.1 370.3 190.4
Ne - 5e5 5e5 - -
T - 50 250 - -
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Figure 6: Actions taken in 2 separate control trajectories using MDP and SARSA policies. Initial state s1 and
next states are randomly generated by the underlying probabilistic model (see Table 5).

Table 5: The state vectors for the MDP and SARSA control trajectories in Figure 6.

MDP states trajectory

Gens Loads RES Lines

s11 s21 s51 s61 s71 s81 s31 s41

1 1 1 1 1 1 1 1

1 1 1 1 3 1 1 1

1 1 1 2 2 3 1 1

1 1 2 1 3 2 1 1

1 1 1 2 3 1 1 1

1 1 3 1 3 3 3 1

2 1 2 1 3 2 1 1

2 2 2 3 1 2 1 1

2 2 2 2 1 1 1 1

2 2 1 3 1 2 1 1

SARSA states trajectory

Gens Loads RES Lines

s11 s21 s51 s61 s71 s81 s31 s41

1 1 1 1 1 1 1 1

1 1 3 1 3 1 1 1

1 1 3 3 2 1 1 1

1 1 2 3 2 1 1 1

1 1 2 1 1 1 3 3

1 1 1 1 1 2 1 3

1 1 1 1 1 2 2 3

1 1 3 3 3 3 2 3

1 1 1 3 2 2 2 1

1 1 2 1 3 2 2 1

5 Discussion on Limitation
While RL, like stochastic dynamic programming (DP), has in principle a very broad scope of application,
it has to face computational issues when the state-action spaces of the control problem are very large. In
such a case, RL has to be combined with regression techniques capable of interpolating over the state-
action space the data obtained from (relatively) few control trajectories [9]. Most of the research in this
context has focused on parametric function approximators, representing either some (state-action) value
functions or parameterized policies, together with some stochastic gradient descent algorithms (see e.g.
[8] or [15]).
Further research work will focus on the development of enhanced RL algorithms, capable of dealing with
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imprecise rewards (e.g. due to unavailable/unreliable models), partial observability and issues related to
scarcity of samples due to low-probability of specific state-action pairs.

6 Conclusion

A framework based on Reinforcement Learning for optimal decision making of power grid systems affected
by uncertain operations and degradation mechanisms has been investigated. Power grid models can
include PHM devices, which are used to inform the agent about the health state of the system components.
This information helps to select optimal O&M actions on the system components.
The SARSA(λ) method was used to solve a control problem for a scale down power grid with renewable
and PHM capabilities. The RL results have been compared to the reference Bellman’s optimality solution
and are in good agreement, although inevitable approximation errors have been observed.
The framework proved to be flexible and effective in tackling a small but representative case study and
future works will test its applicability to more realistic (larger) state-action spaces. To this aim, artificial
neural networks will be used in future research work for state-action space regression to scale up to larger
grids. This necessary verification for a possible future applicability of the method.
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Appendix
The SARSA(λ) algorithm starts initializing the action-value function Q and eligibility traces Z tables. Then, the
values for the learning rate α, the discount factor γ, the decay rate of the traces λ ∈ [0, 1] and the greediness factor
ε (or a policy π to be evaluated) are selected. After this initialization, the episodic loop starts with a random
sample (or selection) of an initial state st, then, an action at is selected based on the adopted policy, e.g. ε-greedy
or π(·|st). A ε-greedy policy consists of random actions, taken with probability ε, or greedy actions taken with
probability 1-ε (i.e. actions for which Q is maximised). Once the initial state-action pair is obtained, the episode
e is evaluated (i.e. a sequence of action-rewards-state-actions). Temporal difference errors δt at the time step t are
calculated, traces replaced or accumulated and Q updated.The episode terminates when a predefined truncation
horizon T is reached (i.e. maximum time length of the episode). The procedure is iterated until a predefined
number of events NE is obtained. The SARSA(0) is guaranteed to convergence to an optimal action-value function
for a Robbins-Monro sequence of step-sizes αt, for further details regarding stopping criteria and convergence
the reader is referred to [16]. RL approaches can tackle control problems with infinite optimisation horizon by
approximating the solution with a T-stage approach. In this sense, windows of T time steps are used to truncating
the time horizon, thus reducing the computational burdens [9]. The SARSA(λ) algorithm works as follows [7]:

Data: Set e = 1, NE , ε (or a policy π to be evaluated), α, γ, λ;
Initialize Q(s, a), for all s ∈ S and a ∈ A, arbitrarily (e.g. Q = 0);
Initialize traces Z(s, a) = 0, for all s ∈ S and a ∈ A;
while e < NE (Episodic Loop) do

Set t = 1;
Initialize starting state st e.g. randomly;
Select action at ∈ A(st) using policy derived from Q (e.g. ε-greedy) or π(·|st);
while t < T (run an episode) do

Take action at, observe st+1 and reward Rt;
Select action at+1 ∈ A(st+1) using policy derived from Q (e.g. ε-greedy) or π(·|st+1);
Compute temporal difference δt and update traces: δt = Rt + γQ(st+1, at+1)−Q(st, at);
Z(st, at) = Z(st, at) + 1 (accumulate traces) or;
Z(st, at) = 1 (replace traces);
Update Q and Z for each s and a: Q(s, a) = Q(s, a) + αδtZ(s, a);
Z(s, a) = γλZ(s, a);
Set t = t+ 1;

end
go to next episode e = e+ 1;

end

Algorithm 1: The SARSA(λ) algorithm adopting replacing or accumulating eligibility traces settings.
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